
An Improved Distance Heuristic Function for
Directed Software Model Checking

Neha Rungta
Department of Computer Science

Brigham Young University
Provo, UT 84601

Email: neha@cs.byu.edu

Eric G Mercer
Department of Computer Science

Brigham Young University
Provo, UT 84601

Email: egm@cs.byu.edu

Abstract— State exploration in directed software model check-
ing is guided using a heuristic function to move states near
errors to the front of the search queue. Distance heuristic
functions rank states based on the number of transitions needed
to move the current program state into an error location. Lack
of calling context information causes the heuristic function to
underestimate the true distance to the error; however, inlining
functions at call sites in the control flow graph to capture calling
context leads to an exponential growth in the computation. This
paper presents a new algorithm that implicitly inlines functions
at call sites to compute distance data with unbounded calling
context that is polynomial in the number of nodes in the control
flow graph. The new algorithm propagates distance data through
call sites during a depth-first traversal of the program. We show
in a series of benchmark examples that the new heuristic function
with unbounded distance data is more efficient than the same
heuristic function that inlines functions at their call sites up to
a certain depth.

I. INTRODUCTION

Multi-core processor design and hyper-threading create a
need for techniques to validate concurrent interactions in
threaded software artifacts. Traditional validation techniques
based on test vector generation generally break down in the
presence of concurrency since they cannot control scheduling
decisions imposed by the operating system when running
the input vectors. As a consequence, the validation is not
effective in discovering subtle race or deadlock conditions that
often lead to unexpected program behavior. Model checking
is particularly effective in finding errors in deep execution
traces because it considers all possible thread schedules in
its analysis. Model checking has the potential to aid software
validation if it can be effectively applied to real software
artifacts.

State explosion is inherent in model checking, and it is
especially problematic in software model checking because of
the size and complexity of typical software artifacts. The pro-
cess of model checking systematically explores the behavior
space of the program in some way. There are several different
tools and approaches to address the state explosion problem in
software model checking, [1]–[5], and the work in this paper
specifically focuses on directed model checking [6]–[8].

Directed model checking guides the search into areas of
the state space where errors are more likely to exist. It aims
to find a property violation before computation resources are

exhausted. Directed model checking uses a heuristic function
to rank successor states during state space exploration. The
search order follows the ranking of states on the search frontier
using a priority queue rather than a search stack. An accurate
heuristic function reduces the number of states generated
before error discovery without dramatically decreasing the
frequency of state generation.

Early heuristics use notions from circuit design technology
for computing the distance estimate. For example, hamming
distance heuristics use the explicit state representation to
estimate a bit-wise distance between the current state and an
error state [9]. Current heuristic functions for directed software
model checking are broadly classified into two categories:
property based heuristics and structural heuristics. A prop-
erty based heuristic function tries to estimate the number of
changes in the program values needed to violate a property,
while structural heuristics consider the structure of either the
actual program or its resulting transition system to compute
the heuristic estimate. Examples of property based heuristics
are in [10], [11]. The work in this paper focuses on structural
heuristics.

The notion of structural heuristics is introduced in [12].
The heuristics in [12] exploit the structural properties of
thread interdependencies specific to only Java programs to
find concurrency errors. Distance heuristic functions [13]–[15]
are structural heuristics that compute the minimal number of
transitions required to reach an error location from the current
state in the control flow representation of the artifact. These
heuristic functions have been shown to be effective in driving
threads into race and deadlock conditions.

The extended-FSM (EFSM) distance heuristic combines
statically computed distance estimates from the structure of
the software artifact with the dynamic call trace in the run-time
stack extracted from the state representation of the software
artifact to improve the accuracy of the heuristic values [15].
The heuristic function is based on the following notion: at a
given program location, the program is either going to reach
a return point for the callee without encountering an error
and return to the caller; or it encounters an error before it
reaches the return point and does not return to the caller.
The algorithm to compute the EFSM distance heuristic uses a
graph with bounded calling context to compute the distances



0a: rts
07: call g
08: rts

y:
05: call f
06: rts

x:
03: call f
04: rts

main:
01: call x
02: call y
0b: error

09: ldx
g:f:

(a)

q9

03: call f
x

RA:08
0a: rts

08: rts
RA:04RA:02

04: rts

(init)
0b: error

01: call x
(init)

main

RA:04
09

05: call f 07: call g

RA:06

RA:08

(init)
02: call y

06: rts
RA:06
08: rts

07: call g

q1 q2 q3

q8

f g

y f

q7

RA:0b

RA:0b

q4

q6 q5

q10q11q12

q0

RA:02

stack frame

q5

q6

q7
stack frame
for main

for g
stack frame

02
(init)

04
RA:02

08
RA:04

RA:08
09

RA : 02

RA : 04

RA : 08

stack frame
for f

for x

q3

(b) (c)

Fig. 1. A program and analysis demonstrating underestimation in the
EFSM heuristic due to bounded calling context. (a) A program with a nested
call depth of four. (b) An one-bounded CFG for the program that inlines
procedures at call sites. (c) The run-time stack for a given state of the program.

in the forward direction. To build such a graph, procedures
are inlined at call sites up to the depth of the user specified
bound. Although the EFSM heuristic function reduces the
number of states before error discovery in various examples, it
is not an efficient heuristic function because the time required
to construct the bounded graph increases exponentially with
the bound; thus, the heuristic function does not scale well to
programs with deeply nested function calls where large bounds
are required for accurate heuristic estimates.

This paper presents a new full context aware (FCA) algo-
rithm that implicitly inlines functions at call sites to compute
distance data with unbounded calling context that is polyno-
mial in the number of nodes in the control flow graph (CFG)
for the software artifact. The new algorithm computes full
context information for non-recursive programs with resolved
function pointers, and works by propagating distance data
through call sites during a depth-first traversal of the program’s
CFG. We show, in a series of benchmark examples, that a new
heuristic function, e-FCA that is based on the EFSM heuristic
but uses the FCA for forward distance estimates, generates
fewer states and decreases total running time compared to the
EFSM heuristic function that uses the inlined bounded calling
context information [15].

II. MOTIVATING EXAMPLE

We demonstrate with an example how the accuracy of the
EFSM heuristic in [15] relies on the bounded calling context
used while computing the static shortest-path distances for
the forward analysis. A program with a maximum possible
call depth of four is presented in Fig. 1(a) where an error
location, 0b, is reachable from the main procedure only after
making a call to procedures x and y. Procedures x and y both
make calls to procedure f which in turn calls procedure g. In

procedure Extended FSM(pc, rstack)
1: d = 0, De = ∅
2: while (rstack) do
3: ret locs = get entries(rstack , k)
4: n = get node in k bounded CFG(pc, ret locs)
5: E = {FSM(n, ne)+ d | ne ∈ Errors ∧ in scope(ne, n)}
6: De = De ∪ E
7: nend := return statement(n)
8: d = d + FSM(n, nend) + 1
9: pc = rstack .top()

10: rstack .pop()
11: return min(De)

Fig. 2. Pseudo-code for the EFSM algorithm.

our program, the EFSM heuristic function tries to accurately
estimate the minimal number of transitions required to reach
the error location from the current program location. For
example, from line 01 of main, it computes the number of
instructions that need to be executed in order for the program
state to reach the error location in line 0b of main. Ideally,
the heuristic computation needs to account for the fact that the
true execution flow of the program moves through procedures
x and y before reaching the error.

The EFSM heuristic inlines procedures at call sites up to
a bounded depth to capture partial context information. It
does this by constructing a k-bounded CFG in a depth-first
traversal of the program, where k is the specified bound. Each
node in a k-bounded CFG is a location in the program with
up to k entries for the partial call trace of length k used to
arrive at that location. A one-bounded CFG for the program
in Fig. 1(a) is shown in Fig. 1(b), where boxes represent
call sites, circle nodes are return points or arbitrary program
instructions, and the diamond shape nodes represent the error
locations in the artifact. Each node, regardless of its type, has
a program location identifier to map it back to the original
program followed by a return address indicated by the RA
label. There is a single return address in each node for this
example because the k-bound of the graph is one. Returning
to our example, procedures x, y, and f have enough context
information to be uniquely inlined at their call sites; however,
procedure g is not fully inlined at its call sites because unlike
procedure f that is called from two unique call sites: locations
03 and 05, while procedure g is invoked two times from the
same call site: location 07. In Fig. 1(b), the node q4, an rts
(return) instruction, is at program location 0a in procedure g.
The return instruction can transfer control to any node that is
at location 08 in procedure f. The edges from the q4 node
show that there are two possible return points: nodes q5 and
q10. Both are at location 08, and both are an invocation of f.
Without a k-bound of at least two, there is not enough context
to create a unique invocation in the graph of the partial call
trace, f→ g, for both the x and y originations. The missing
context leads to an underestimation of the final estimate in a
shortest-path analysis because the shortest-path analysis uses
the x invocation to get to procedure f but returns to the y
invocation.



The EFSM heuristic function in [15] uses the calling context
in the run-time stack present in the state of the program
to recapture part of the missing calling context in the k-
bounded CFG. There is no additional overhead in maintaining
the run-time stack of the program because at any point in
the program, the model checker has a complete snapshot of
the actual state of the program including its entire run-time
stack. The concrete run-time stack reflects the complete call
trace from the top-most procedure of the artifact to the current
program location which can be used in conjunction with the k-
bounded graph to produce an accurate distance estimate. This
is done by unrolling the run-time stack, and at each stack
frame, considering the case that the program moves forward
to encounter an error without returning from the current stack
frame, or it returns from the current stack frame and then
moves forward to encounter an error. The heuristic function
minimizes over each of these scenarios as it moves through
stack frames.

In Fig. 1(c), we present an example of a run-time stack from
the concrete state of the program in the model checker. The
current stack frame is for procedure g shown at the bottom
of the run-time stack since it grows downward. The return
address for the current procedure in the run-time stack is
location 08 in procedure f. The current program location is
09 in the procedure g. The EFSM heuristic function, shown in
Fig. 2, takes the current program location (pc) and combines
it with the first k return locations (ret locs) from the run-
time stack (rstack ) to identify the node (n) corresponding
to the current program state in the k-bounded CFG (lines 3-
4). The corresponding node in the one-bounded graph for the
current program state of Fig. 1(b) is q3 since it is at program
location 09 with a return address of 08. The heuristic function
in Fig. 2 now computes a distance estimate in the forward
direction within the scope of the current stack frame (line
6). It requests a distance estimate on the k-bounded graph
to all possible errors (ne ∈ Errors) in the forward direction
using a shortest-path analysis (FSM(n, ne)) assuming the
current procedure does not return from the current stack frame
(in scope(ne, n) = true). In our example, the error is not
reachable from procedure g without moving through its return
point so the shortest-path analysis returns ∞. The heuristic
function in Fig. 2 then makes a note of this distance (line 6)
and then computes the shortest distance to the previous call
frame through the return statement of the current procedure
(lines 7-8). It finally simulates returning from the current call
frame by making the first return location its current program
location (line 9).

Continuing with the concrete example in Fig. 1(c), after
returning from procedure g, the EFSM heuristic function
combines the new current program location, now 08, and the
return location, 04, to find the next node in the k-bounded
CFG. This corresponds to node q5 in the one-bounded graph
in Fig. 1(b). The heuristic function requests another forward
estimate which is still∞. It then considers the cost of returning
from the stack frame. The algorithm in Fig. 2 repeats this
process until it runs out of stack frames in the run-time

stack (line 2), and it then reports the distance estimate to
the nearest error computed during the analysis (line 11).
The key observation in this example is that the call site for
procedure g is resolved using the run-time stack, and the
EFSM heuristic reports the correct distance value from node
q3 to the error location. This does not, however, completely
remove the underestimation in other distance estimates.

When the program execution is at the topmost level of the
call structure or has a shallow call depth, the heuristic estimate
computation is reduced to a shortest-path analysis on the k-
bounded CFG. Returning to our example, suppose the concrete
state in the model checker has a single frame in the run-time
stack showing the current location to be node q0. A request for
the distance estimate in the forward direction returns a distance
of seven which is the shortest-path to the error node q12

from node q0 in the one-bounded CFG. The missing context
information at depths greater than one is needed to resolve the
unique call sites leading to node q4, and it causes the shortest-
path analysis to choose a path that is not consistent with the
actual program execution from node q0.

The cost of building the k-bounded graph is exponential in
the nested call depth due to inlining. The cost of doing the
shortest-path analysis is also very expensive since it is run
several times to account for the scoping check on the path to
the error. For the EFSM heuristic to be accurate, it needs full
calling context, but for it to be efficient in runtime, it needs a
small k-bound. The goal of this work is to produce an efficient
estimate in terms of its accuracy and computational overhead.

III. FULL CONTEXT AWARE (FCA) ALGORITHM

The FCA algorithm is an interprocedural control flow anal-
ysis technique that implicitly constructs call traces to compute
static lower-bounds on distance estimates to return locations of
the procedures and nearest error locations in a software artifact
using shortest-path analysis and depth-first traversal. The FCA
algorithm uses the reverse invocation order to summarize the
shortest-path analysis in all the callees of a given procedure.
It then propagates the summarized distance information of the
callees back to the given procedure. The input to the algorithm
is a set of CFGs with a single CFG for each method or
procedure in the artifact. Fig. 3(a) is an example of the input
for a program with two procedures main and sub1. Each
CFG has a single start node and end node. A call node is
represented as a box in the CFG. The label in the call node
identifies the start node for the target CFG of the call. The
diamond shape nodes represent error nodes in the program.
These are most often critical sections or assertion points in
the software artifact. We associate values with each CFG node
for the distance to the end node (dend) and the distance to the
nearest error node (derror).

The FCA algorithm uses a depth-first traversal to build
a distance matrix for a given CFG to use in a shortest-
path analysis to compute dend and derror for each node. We
associate with each individual CFG a distance matrix, L, that
is defined over the number of nodes in the CFG. L is initialized
with entries along the diagonal set to zero and all other entries



start

m3

m4

m1

s4

s3

s2

s1

m2

start

call s1

end end

error

end

s1

s2

s3

s4

dend : 3
derror : 1

dend : 2
derror : 0

dend : 1
derror :∞

dend : 0

derror :∞

start

error

Distance Matrix for main
m1 m2 m3 m4

m1 0 1 1 ∞
m2 ∞ 0 5 ∞
m3 1 ∞ 0 1

Shortest-path Analysis
m1 m2 m3 m4

m1 0 1 1 2
m2 6 0 5 6
m3 1 2 0 1

call s1

derror : 3

dend : 6
derror : 2

dend : 0

derror :∞

dend : 1
derror : 4

m1

m2

m3

m4

end

start
dend : 2

(a) (b) (c) (d)

Fig. 3. Execution of the FCA on a set of CFGs. (a) A set of two CFGs for a software artifact. (b) The CFG for sub1 annotated with dend and derror data.
(c) Distance matrix L for main before and after shortest-path analysis. (d) The CFG for main annotated with dend and derror data.

set to∞. Edge costs in L are added as the depth-first traversal
moves through nodes in the CFG. The depth-first traversal
begins at the start node of the top-level method in the software
artifact. In our example, the traversal starts at node m1, updates
the (m1, m2) entry in L to add the cost of the m1 → m2

edge, and then visits m2. The distance between two immediate
successors in a CFG is one for all nodes except the successors
of call nodes. The distance to the immediate successor of a
call node needs to reflect the cost of moving through the target
CFG of the call.

The depth-first traversal moves to the start node of the
target CFG at a call node, and when the traversal returns,
it then explores the immediate successor of the call node in
the current CFG. The distance to the immediate successor
of the call node relies on the analysis of the target CFG to
account for the cost of moving through the target CFG without
encountering an error. The distance to the immediate successor
of the call node is the dend value stored in the start node of
its target CFG plus two: one to move to the start node of the
target CFG and one to return from the end node of the target
CFG. Fig. 3(b) shows the dend and derror values in the sub1
CFG when the traversal returns to m2 after analyzing sub1.
Recall that call node m2 points to the s1 start node. The dend

value for s1 is three. This reflects the number of program
steps required in sub1 to reach its s4 end node. The traversal
updates the (m2, m3) entry in L by setting the m2 → m3 edge
to five (three plus two), and continues the traversal by visiting
node m3. The top matrix in Fig. 3(c) is the final L matrix for
main. The matrix includes all the edges in the main CFG
with the cost of moving through sub1 included in the row
for m2. Note that the matrix excludes the row for m4 since
the end node has no successors in the traversal. The L matrix
provides the requisite data to derive dend and derror values for
the CFG nodes.

The FCA algorithm computes dend for each node in the
current CFG with a shortest-path analysis using the distance
matrix when the traversal is ready to backtrack out of the start
node. Recall that L only includes nodes in the immediate CFG
since call nodes move to the immediate successor in the CFG

with the cost of moving through the target CFG. The bottom
matrix in Fig. 3(c) is the final L matrix for main after the
shortest-path analysis. Each dend value for the CFG of main
is set to its corresponding entry in the m4 column of L after
the shortest-path analysis. This is the shortest-path through the
CFG to the end node m4 including the cost of function calls.

The nearest error distance values are computed by minimiz-
ing over distances to error locations in the current CFG and
distances to error locations reachable from the target CFGs of
call nodes. In the discussion, Nerror and Ncall denote the sets
of error locations and call nodes respectively for a given CFG.
We use the results of the shortest-path analysis in the distance
matrix, L, to compute distances to the nearest error location.
For convenience, a global array, Derror(n) is used to store the
distance to the nearest error, derror, for node n in a CFG. The
equations for computing derror for a given node n are

dlocal = min
ne∈Nerror

(L(n, ne)) (1)

dnonlocal = min
nc∈Ncall

(L(n, nc) + Derror(n′start) + 1)(2)

derror = min(dlocal, dnonlocal) (3)
Derror(n) = derror (4)

where n is the current node being analyzed and a call node
nc points to the start node n′start of its target CFG.

The dlocal value in Equation 1 is the distance to the nearest
error in the immediate CFG. This error is reachable without
having to move into a different CFG through a call node. The
value is taken directly from the shortest-path analysis results
in the distance matrix (L(n, ne) is the shortest-path from node
n to node ne in the current CFG).

The dnonlocal value in Equation 2 is the distance to the
nearest error through a call node of the immediate CFG. This
error is only reachable by moving into a different CFG through
a call node. The equation computes the transitive distance of
first moving forward to the call node and then moving from
the start node of the target CFG to the error. In the equation for
the nc call node, n′start is the start node of its target CFG. The
value stored in Derror(n′start) is computed prior by virtue of
the depth-first traversal. The traversal only triggers the distance



procedure compute distances(N, E, nstart, nend, Nerror, Ncall)
1: /∗ Visited is global variable initialized to ∅ ∗/
2: if nstart 6∈ Visited then
3: Visited = Visited ∪ {nstart}
4: /∗ L : N ×N → N ∪ {∞}, entries along the diagonal are set

to 0, while all other entries are set to ∞ ∗/
5: L = traverse CFG(nstart, Ncall, L)
6: L = compute all pairs shortest distance(L)
7: for each n ∈ N do
8: dend = L(n, nend)
9: /∗ Dend, a global array of size X is initialized to 0 ∗/

10: Dend(n) = dend

11: dlocal = minne∈Nerror(L(n, ne))
12: 〈N ′, E′, n′start, n′end, N ′error, N

′
call〉 = Target(nk)

13: dnonlocal = minnk∈Ncall(L(n, nk) + derror(n′start) + 1)
14: derror = min(dlocal, dnonlocal)
15: /∗ Derror, a global array of size X is initialized to 0 ∗/
16: Derror(n) = derror

17: return
18:
procedure traverse CFG(nx, Ncall, L)
19: if nx ∈ Ncall then
20: 〈N ′, E′, n′start, n′end, N ′error, N

′
call〉 = Target(nx)

21: compute distances(N ′, E′, n′start, n
′
end, N ′error, N

′
call)

22: dsucc = Dend(n′start) + 2
23: else
24: dsucc = 1
25: /∗ Conditional branches have multiple successors ∗/
26: for each n′x ∈ succ(nx) do
27: L(nx, n′x) = dsucc

28: L = traverse CFG(n′x, Ncall, L)
29: return L

Fig. 4. Pseudo-code for the FCA algorithm.

analysis when it is ready to backtrack out of a start node to
resolve call dependencies in the computation. The final derror

value for node n in Equation 3 is either local to the CFG or
reached through a call node in the CFG.

Fig. 3(d) shows the end results of the FCA algorithm for
main. Fig. 3(b) and Fig. 3(d) give the complete view of the
final analysis. For Fig. 3(d), the path to the end node for m1

bypasses the m2 call node for a distance of two, which is
the number of edges in the path m1 → m3 → m4. An error
location is only reachable through the target CFG of the call
node m2. The nearest error for m1 is three which represents
the path m1 → m2 → s1 → s2 in the CFGs. An error location
cannot be reached from node m4.

The FCA algorithm lower-bounds all distance estimates by
assuming shortest-paths through CFGs. From this, the derror

and dend data by themselves form an admissible and consistent
distance estimate similar to the finite state machine (FSM)
distance heuristic in [13]. Regardless of the true path of
execution, the length of that path is at least that of the shortest-
path through the CFG. An example is seen in Fig. 3(d) where
the algorithm bypasses the m2 call node to reach the m4

end node. If the true path of execution follows m2, then the
actual distance is strictly larger than the reported distance. This
lower-bound also appears in all iterative constructs of the CFG.

The pseudo-code for the FCA algorithm is
presented in Fig. 4. In Fig. 4, a CFG is a tuple
〈N, E, nstart, nend, Ncall, Nerror〉 where N is set of uniquely
labeled nodes, E ⊆ N × N is the set of edges, nstart ∈ N

is a unique start node, nend ∈ N is a unique end node,
Ncall ⊆ N is a set of call nodes, and Nerror ⊆ N is a set
of error nodes. Dend and Derror are global arrays that store
distances to the end node and nearest error node respectively
for X = |

⋃
1≤i≤m Ni| nodes where m is the number of

procedures in the artifact. Note that the derror and dend values
stored in Derror and Dend arrays are the same derror and dend

values annotated on the CFGs. The function Target takes a
call node as input and returns the target CFG of the call node.
Finally, the function succ(nx) = {ny ∈ N | (nx, ny) ∈ E},
which means the succ function returns a set containing all
the immediate successors of the input node, nx.

In Fig. 4, the compute distances function intializes a dis-
tance matrix L (line 4) for the input CFG and calls the
traverse CFG function (line 5). The traverse CFG function
uses a depth-first traversal to add edge costs between succes-
sors of the CFG in the distance matrix L (lines 26-28). If the
traversal encounters a call node (line 19), the algorithm makes
a mutually recursive call to compute distances with the target
CFG of the call node (line 21). When the execution returns, it
adds the edge cost to the immediate successor of the call node
taking into account the cost of moving through the target CFG
without encountering an error (line 22). For all other nodes,
the distance between two immediate successors in a CFG is
one (line 24). After the traversal of the CFG is done, the
algorithm returns the distance matrix L (line 29), and the flow
of execution returns to the compute distances function where
the FCA algorithm computes the all-pairs shortest-path on the
distance matrix L (line 6). For each node in the CFG, it adds
the corresponding dend and derror values to the global arrays
Dend and Derror (lines 7-16). The derror value is computed
by minimizing over distances to error locations in the current
CFG (dlocal) and distances to error locations reachable from
the target CFGs of call nodes (dnonlocal).

The intial traversal and the final algorithm to propagate the
dend and derror values are linear in the number of nodes in
the artifact since the traversal reuses the information from the
secondary analysis if it encounters the same CFG numerous
times from different call nodes in the artifact. The complexity
of the secondary analysis is O(X3), where X is the total
number of nodes in the artifact because an all-pairs shortest-
path algorithm is run once for every reachable CFG in the
artifact. Hence, the complexity of the FCA algorithm is
polynomial in time and space with regards to the total number
of nodes in the CFGs as a result of the shortest-path analysis.

IV. EFSM WITH FCA

The FCA is a forward analysis algorithm which is run
once statically. The FCA cannot resolve the non-determinism
arising from the end nodes in the CFGs of the program. For
example, in Fig. 1(a) there are two calls to procedure f. The
CFG of f does not contain any information about where the
flow of execution returns when it exits procedure f. The only
information present in the nodes of the CFGs are the distance
values to the end (dend) of the CFGs and the distance values
to error locations (derror) in the forward direction without



dend = 0

dend = 3
derror = 14
dend = 14

derror =∞
dend = 5

derror =∞
dend = 5

derror =∞
dend = 0

derror =∞
dend = 0

call x1

call y1

call f1

call f1

call g1

derror =∞
dend = 1

m1

m2

m3

derror = 0
dend = 0

y1

y2

x1

x2

f1

f2

g1

g2

error
end

end

end

end

derror =∞
dend = 0

endderror = 7
dend = 7

derror =∞

derror =∞

Fig. 5. The CFGs for the program in Fig. 1(a) annotated with context
aware distances after running the FCA algorithm.

executing the end of the CFGs. We dynamically recreate the
call trace based on the values of the run-time stack like the
EFSM heuristic to compute true successors of end nodes for
a particular program execution path.

For the program shown in Fig. 1(a), the CFGs for each
procedure annotated with derror and dend values after execut-
ing the FCA computation are shown in Fig. 5. Now let us
consider a concrete example of how the EFSM is combined
with the FCA to compute accurate heuristic estimates. Suppose
the values on the return stack are: 〈x2, m2〉 where the x2 is the
first return location encountered on exiting the current stack
frame, and m2 is the next return location. The current location
of the program is f1 in procedure f. The heuristic function
in the EFSM requests a distance estimate to the error in the
forward direction without exiting from the current procedure.
Instead of computing this estimate on a k-bounded graph, it
now considers the derror value present on node f1. In Fig. 5,
we can see that the value of derror is ∞ for node f1 which
means the error is not reachable in the forward direction.

After noting the value of derror at node f1, the heuristic
function uses the value of dend to compute the distance to the
end node of procedure f. It requires this value to estimate the
distance to the previous call frame. The algorithm to compute
the heuristic estimate has an accumulator variable, path, that
keeps track of the cost incurred in backtracking through the
call frames. In Fig. 5 the value of dend is three; the heuristic
function adds one to it to account for the return and sets path
equal to four. Next, the heuristic simulates returning from the
current call frame by making the first value on the return stack,
x2, its current program location like the EFSM algorithm. The
value of derror on node x2 is ∞ showing that the error is still
not reachable. Since x2 is an end node, the value of dend is
zero, and the heuristic function increments path by one for
the return, changing the value of path to five. The heuristic
function repeats the process of unrolling the stack by moving
to node m2, where the value of derror is seven. It adds this
value to path to get the final value of twelve as the estimate of
the distance to the error. At all points of forward computation
to find the error location, and while going to the end node, the
heuristic function has access to unbounded context information
from the FCA algorithm resulting in a better lower-bound on

TABLE I
TIME TAKEN IN SECONDS FOR STATIC ANALYSIS

Name T M k FSM EFSM FCA
Hyman 2 3 1 0 3 0
Hyman 2 4 1 1 11 0
Hyman 2 5 1 1 27 0
D-phil 2 2 1 1 76 0
D-phil C 2 2 1 0 76 0
D-phil 2 3 1 1 146 0
D-phil C 2 3 1 0 147 0
D-phil 2 4 0 1 4 1
D-phil C 2 4 0 1 4 1
D-phil 2 5 0 2 7 1
D-phil C 2 5 0 2 7 1
Barbers 3 3 1 1 41 0
Barbers 3 4 0 1 3 1
Barbers 3 5 0 1 4 1

the true estimate of the distance to the error which is also
admissible and consistent.

To calculate the heuristic estimate for a concurrent program
with multiple threads, the approach presented in [13] computes
the distance to the nearest error location for each thread and
sums up the individual estimates to create a final heuristic
value. To ensure underestimation of the distance to the error,
we modify the number of individual estimates summed to-
gether based on the property being verified. For example, the
heuristic estimate for a mutex violation is the sum of distances
in two threads which have the shortest paths to the critical
section compared to all the other threads. Now, consider the
property which is a check to see if any thread reaches a certain
location in the program, like an assert statement. In such a
case, the heuristic estimate is the smallest distance in the set
of estimated distances from the current location to the desired
location for each thread. Another useful property checked
in concurrent programs is whether two or more threads are
deadlocked. In this case, we take the summation of the
distances from the current state to the error state for two or
more threads that can lead to a deadlock state. From this point
forward in the presentation we refer to the combination of the
FCA and EFSM approaches as the e-FCA heuristic function.

V. RESULTS

We implemented the e-FCA heuristic function in the gnu-
debugger based model checker Estes, [8], and executed it on a
benchmark set consisting of programs with concurrency errors.
The results show that the e-FCA heuristic reduces the total
number of states generated and also decreases the total running
time before error discovery compared to the FSM and EFSM
distance heuristics.

We focus specifically on three classical concurrency prob-
lems in our benchmark suite: Dining Philosophers,
Barbershop, and Hyman’s mutual exclusion
principle. The results presented are from a Pentium III
1.5 Ghz processor with 2 GB of RAM and are run on Estes,
with a 6.1.1 version of the gnu debugger, using the m68hc11
backend simulator. We report the wall clock time for the time



TABLE II
A COMPARISON ACROSS DIFFERENT SEARCH TECHNIQUES

Name T M k Total States Generated Time taken in Seconds
DFS Rand FSM EFSM e-FCA DFS Rand FSM EFSM e-FCA

Hyman 2 3 1 6,478 15,800 10,227 7,160 3,817 3 9 4 6 1
Hyman 2 4 1 16,190 59,796 41,791 21,909 13,529 7 28 17 21 5
Hyman 2 5 1 40,471 91,947 123,743 59,951 38,745 17 42 49 56 16
D-phil 2 2 1 157,436 475,184 53,897 4,594 1,626 71 318 31 79 1
D-phil C 2 2 1 19,769 11,497 18,148 1036 415 12 10 14 77 0
D-phil 2 3 1 ∗ 452,092 54,725 13,830 3,816 ∗ 292 28 155 3
D-phil C 2 3 1 157,818 95,009 8,575 3,348 1,015 102 75 5 149 1
D-phil 2 4 0 ∗ 999,480 186,419 36,467 13,696 ∗ 730 113 27 8
D-phil C 2 4 0 548,127 173,494 42,107 10,224 3,655 299 159 31 12 3
D-phil 2 5 0 ∗ ∗ 334,198 400,474 55,876 ∗ ∗ 178 388 32
D-phil C 2 5 0 ∗ 370,656 861,319 142,350 14,755 ∗ 294 680 136 11
Barbers 3 3 1 ∗ 442,285 82,333 21,465 3,298 ∗ 282 41 14 2
Barbers 3 4 0 ∗ 939,828 73,940 75,635 13,118 ∗ 576 38 47 7
Barbers 3 5 0 ∗ ∗ 378,632 388,161 66,608 ∗ ∗ 237 252 38

taken to do the static analysis and for the total running time
of the program before error discovery, as well as the total
states generated before error discovery.

For the benchmarks, we add procedures containing nested
function calls that do not affect the property being verified
to the base implementation of the concurrent programs. We
then randomly insert calls to these procedures throughout the
programs to derive examples with varying call structures and
call depths in order to test the accuracy and efficiency of the
e-FCA in computing context aware distances. To measure the
accuracy of the e-FCA heuristic function we compare the
e-FCA to the shortest-path analysis (FSM) and the EFSM
distance heuristic. We also compare it with random search and
an exhaustive depth-first search (DFS). We use best-first search
rather than A∗ to decrease the number of states expanded
before error discovery; although best-first does not guarantee a
shortest error trace like the A∗ search. In our experiments, the
length of the error traces generated by the best-first search
are comparable to that of A∗. The results of the analyses
are shown in Table I, Table II and Table III. In Table I
and Table II the first column (Name), shows the concurrent
program being verified; if the program is model checked at
the C-level, where a single C instruction is considered atomic,
a letter C is appended to the end of the program name.
Otherwise, the program is model checked at the assembly-
level where a single assembly-level instruction is considered
atomic. The next column (T) indicates the number of threads
in the program, the column (M) shows the maximum possible
call depth of the program, and the column (k) is the value of
the bound picked for the EFSM heuristic.

The static analysis time reported in Table I is the time
taken in seconds during the period after the execution of the
program starts and before the model checking run begins. The
FCA analysis takes negligible amount of time. The average
time taken by the FCA to complete static analysis (0.65 secs)
is less than the average time (1 secs) taken by the FSM,
even though the FSM does not consider calling context of
the program at all. As we increase the k-bound for the EFSM

distance heuristic, the cost to construct the inlined graph and
do a shortest path analysis for checking whether the error
is in scope grows exponentially. The high overhead of static
analysis with larger k-bounds forces us to pick a bound of
either one or zero for the EFSM distance heuristic in order to
finish static analysis within a few minutes. In spite of picking
low bounds of k for the EFSM computation, the time taken
by EFSM to complete static analysis is significantly higher
compared to the FCA. Note that even with a bound of zero,
the EFSM dynamically recreates the call trace of the program;
hence, it has more context than the FSM distance heuristic.

For each model, we report the total number of states
enumerated before finding the error state and total running
time to find the error in Table II. The ‘∗’ symbol in Table II
shows that after generating a million states, the error state was
still not found, and at that point, the search was terminated.
For the random search, the heuristic value is set to a random
value and the numbers reported for the total number of states
and total running time numbers are averaged over 10 model
checking runs.

The e-FCA gains a significant reduction in total states gener-
ated compared to the other heuristics and search techniques as
shown on the left side of Table II. In Table II, we can see that
DFS, an exhaustive search is mostly ineffective in finding the
error. In seven out of fourteen examples it is unable to find
the error within a million states; however, sometimes DFS
happens to find the error quickly by chance as seen in the
Hyman examples. In some cases, the EFSM generates more
states than the FSM distance heuristic before finding the error.
Our experiments with different k-bounds show that for some
programs, the improvement in error discovery by the EFSM
heuristic with increasing context is not always monotonic. For
such programs, the EFSM heuristic does not perform well until
the context information reaches a certain threshold.

The e-FCA also obtains a significant decrease in the total
running time compared to the other search techniques as
shown on the right side of Table II. The state reduction
achieved by the EFSM is not enough to compensate for the



TABLE III
SCALABILITY ACROSS DIFFERENT THREADS

Depth = 2 Depth = 5 Depth = 9
T States Time States Time States Time
5 814 1 7,064 5 92,434 71
9 1,070 1 7,320 6 93,230 82

11 1,196 1 7,446 11 93,356 144
15 1,448 1 7,698 12 93,608 158
18 1,641 1 7,891 12 93,801 165
20 1,767 2 8,071 13 93,927 173
25 2,086 3 8,336 15 94,246 187
30 2,401 3 8,970 18 94,561 204
40 3,040 4 9,603 22 92,500 233
51 3,736 8 10,306 30 95,896 311

high cost of static analysis causing its total running time to in-
crease dramatically compared to the e-FCA. While computing
the heuristic estimate, the EFSM faces an additional overhead
cost of extracting the call trace in the run-time stack from the
start of the program to its current point. The e-FCA faces the
same overhead of extracting the run-time stack; however, this
cost is very effectively mitigated by the significant reduction
in the states generated and low cost of static analysis resulting
in a substantial decrease in the total running time of the e-FCA
before error discovery.

We test the scalability of the e-FCA heuristic function
by instrumenting our implementation of the barbershop
problem to allow a variable number of threads (between 5
and 51). Additionally, we implement three versions of the
problem with varying maximum possible call depths of two,
five, and nine. The total number of states and total running
time before error discovery for these examples are presented
in Table III. The first column (T) in Table III indicates the
number of threads created for the particular example. From
the barbershop example, it seems that the e-FCA scales to
multiple threads with a high degree of nested function calls.
DFS and random search do not find the error in a million states
for even the smallest model. The FSM distance heuristic and
EFSM distance heuristic, with small k-bounds, do not find
the error in a million states for most of the models. With a
slightly higher k-bound the EFSM heuristic does not finish
static analysis in 1 hour for any of the examples.

VI. CONCLUSION AND FUTURE WORK

In this paper we present the FCA algorithm that computes
full context aware distances for a CFG in a non-recursive
program with resolved function pointers by implicitly inlining
function calls. It propagates context information through call
nodes, start nodes, and end nodes of the CFG and annotates
the nodes in the CFG with context sensitive distances to end
nodes and error locations in the forward direction. We then
present a new heuristic function, e-FCA which combines the
unbounded distance data computed by the FCA algorithm with
the dynamic recreation of the run-time stack from the EFSM
heuristic function. The e-FCA heuristic function computes
more accurate heuristic estimates compared to other distance

heuristic functions.
In some cases, the e-FCA heuristic function underestimates

the true distance to the error locations because it does not
consider the feasibility of the execution paths. Resolving the
feasiblity of all execution paths is not possible statically;
however, while model checking, as the variables are assigned
dynamic values, we can determine the infeasible execution
paths. In future work we plan on pruning these infeasi-
ble execution paths before computing the heuristic estimate
to overcome the underestimation arising due to the path-
insensitive computation of the e-FCA.

REFERENCES

[1] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software veri-
fication with Blast,” in Proceedings of the 10th International Workshop
on Model Checking of Software (SPIN), ser. Lecture Notes in Computer
Science, T. Ball and S. Rajamani, Eds., vol. 2648, Portland, OR, May
2003, pp. 235–239.

[2] T. Ball and S. Rajamani, “The SLAM toolkit,” in 13th Annual Confer-
ence on Computer Aided Verification (CAV 2001), ser. Lecture Notes in
Computer Science, G. Berry, H. Comon, and A. Finkel, Eds., vol. 2102.
Paris, France: Springer-Verlag, July 2001, pp. 260–264.

[3] J. Penix, W. Visser, C. Pasaranu, E. Engstrom, A. Larson, and
N. Weininger, “Verifying time partitioning in the DEOS scheduling
kernel,” in 22nd International Conference on Software Engineering
(ICSE00). Limerick, Ireland: ACM, June 2000, pp. 488–497.

[4] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: An extensible and
highly-modular model checking framework,” ACM SIGSOFT Software
Engineering Notes, vol. 28, no. 5, pp. 267–276, September 2003.

[5] T. Ball and S. K. Rajamani, “Bebop: A symbolic model checker for
boolean programs,” in 7th International SPIN Workshop, ser. Lecture
Notes in Computer Science, K. Havelund, J. Penix, and W. Visser, Eds.,
vol. 1885. Springer, August 2000, pp. 113–130. [Online]. Available:
citeseer.nj.nec.com/ball00bebop.html

[6] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs.” Automated Software Engineering, vol. 10, no. 2,
pp. 203–232, 2003.

[7] P. Leven, T. Mehler, and S. Edelkamp, “Directed error detection in C++
with the assembly-level model checker StEAM,” in Proceedings of 11th
International SPIN Workshop, Barcelona, Spain, ser. Lecture Notes in
Computer Science, vol. 2989. Springer, 2004, pp. 39–56.

[8] E. G. Mercer and M. Jones, “Model checking machine code with the
GNU debugger,” in 12th International SPIN Workshop, ser. Lecture
Notes in Computer Science, vol. 3639. San Francisco, USA: Springer,
August 2005, pp. 251–265.

[9] C. H. Yang and D. L. Dill, “Validation with guided
search of the state space,” in 35th Design Automation
Conference (DAC98), 1998, pp. 599–604. [Online]. Available:
http://citeseer.nj.nec.com/yang98validation.html

[10] S. Edelkamp, A. L. Lafuente, and S. Leue, “Directed explicit model
checking with HSF-SPIN,” in Proceedings of the 7th International SPIN
Workshop, ser. Lecture Notes in Computer Science, no. 2057. Springer-
Verlag, 2001.

[11] K. Seppi, M. Jones, and P. Lamborn, “Guided model checking with a
bayesian meta-heuristic.” Fundamenta Informaticae, vol. 70, no. 1-2, pp.
111–126, 2006.

[12] A. Groce and W. Visser, “Model checking Java programs using struc-
tural heuristics,” in 2002 ACM SIGSOFT International symposium on
software testing and analysis, 2002, pp. 12–21.

[13] S. Edelkamp and T. Mehler, “Byte code distance heuristics and trail
direction for model checking Java programs,” in Workshop on Model
Checking and Artificial Intelligence (MoChArt), 2003, pp. 69–76.

[14] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “The
right algorithm at the right time: Comparing data flow analysis
algorithms for finite state verification,” in International Conference
on Software Engineering, 2001, pp. 37–46. [Online]. Available:
citeseer.ist.psu.edu/cobleigh01right.html



[15] N. Rungta and E. G. Mercer, “A context-sensitive structural heuristic for
guided search model checking,” in 20th IEEE/ACM International Con-
ference on Automated Software Engineering, Long Beach, California,
USA, November 2005, pp. 410–413.


