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ABSTRACT
In this paper we build on the FSM distance heuristic for
guided model checking by using the runtime stack to recon-
struct calling context in procedural calls. We first build a
more accurate static representation of the program by in-
cluding a bounded level of calling context. We then use the
calling context in the runtime stack with the more accurate
control flow graph to estimate the distance to the possi-
ble error state. The heuristic is computed using both the
dynamic and static construction of the program. We eval-
uate the new heuristic on models with concurrency errors.
In these examples, experimental results show that for pro-
grams with function calls, the new heuristic better guides
the search toward the error while the traditional FSM dis-
tance heuristic degenerates into a random search.

Categories and Subject Descriptors: D.2.4 Software
Engineering Software/Program Verification [Model check-
ing]

Keywords: Guided search, structural heuristics

General Terms: Verification, algorithms, reliability

1. INTRODUCTION
Explicit state model checking is a verification method that

proves whether a transition system can or will reach an er-
ror state that violates a pre-defined property. For example,
the Java Pathfinder tool model checks the actual software
using a Java virtual machine [10]. Similar approaches use
simulators and debuggers for other machine architectures [7,
8]. These approaches retain a high-fidelity model of the tar-
get execution platform with low-level control of scheduling
decisions.

The primary challenge to explicit model checking is man-
aging the size of the transition system. For large software
systems, the computational resources are quickly exhausted
before model checking finishes exploration. One solution to
state explosion is guided model checking. Guided model
checking focuses on error discovery by using heuristics to
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prioritize the search. The idea is to discover an error before
computational resources are exhausted. Search priority is
determined by heuristics that rank states in order of interest,
with states estimated to be near errors being explored first.
Hamming distance heuristics use the explicit state represen-
tation to estimate a bit-wise distance between the current
state and an error state [11]. Hamming distance heuristics
ignore the property being verified as well as the structure
of the transition system. The property being verified is ac-
counted for in [2]. The approach is further refined with
Bayesian reasoning in [9]. These heuristics only consider
the state representation and the property being verified.

Guided search heuristics can be improved by considering
program structure together with the property being veri-
fied. Heuristics related to Java programs are described in
[4]. Finite state machine (FSM) distance heuristics in [3, 1]
exploit the program structure by extracting the control flow
of the program to compute a heuristic estimate. The FSM
distance heuristic is not context sensitive; this means that it
ignores the calling context of functions. The lack of calling
context in function calls causes the heuristic to underesti-
mate the actual distance to the error state. In the worst
case, a guided search using the FSM distance heuristic de-
generates into a random search of the transition system. In
this paper, we present an algorithm that reconstructs calling
context using the runtime stack in the concrete state with
an augmented control flow graph to improve the estimate of
the distance to an error state. Improvement is shown with a
series of benchmark examples where the new heuristic visits
fewer states before finding an error.

2. FSM DISTANCE HEURISTIC
The FSM distance heuristic builds a static representation

of the program that depicts structure and its flow of execu-
tion. Edelkamp and Mehler in [3] use a partitioning function
to map object code into blocks. They use a target function
to generate connecting edges between the blocks. This graph
is identical in structure and function to an interprocedural
control flow graph (ICFG)[6]. Hence we will refer to the
graph in [3] as an ICFG. The FSM distance is defined as
the minimal number of operations required to reach an er-
ror state from the current state. The FSM distance heuristic
maps the current state of the program onto a vertex in the
ICFG. During the guided search, it calculates the length of
the shortest path to the ICFG vertex for the error from the
current vertex in the ICFG. It returns this length as the
heuristic estimate to guide the search. The FSM heuristic
is admissible and consistent.
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Figure 1: A simple example (a) A program that calls
foo twice and checks for error (b) The control flow
graph indexed on PC value

The work in this paper builds on the FSM distance heuris-
tic. We demonstrate the algorithm and also its shortcom-
ings. The assembly instructions of a simple C program,
where procedure foo is called twice from procedure main,
are shown in Figure 1(a). The assembly-level representation
of the program is used to obtain the finest granularity of
the program. Errors arising due to data inconsistencies and
scheduling techniques can be detected at this level as shown
in [8]. Figure 1(b) is the ICFG for the program. In building
the ICFG we assume indirect jumps only target entries in
defined jump tables, and that indirect procedures calls only
target valid entry points in procedures. For convenience, we
label the vertex in the ICFG with the program counter (PC)
values from the corresponding locations indicated to the left
of the program. These PC values are unique labels for each
line of the source program. Let us suppose that the current
state of the program is at PC value 06 in the explicit state
search, then the corresponding location in the ICFG is at
vertex 06. The minimum number of steps required to reach
the error location at vertex 05 from vertex 06 is the FSM
distance. In this example, the shortest path from vertex 06
to 05 in the ICFG is along the path 06 → 07 → 08 → 05,
and it has a length of 4. This value is returned as the heuris-
tic estimate for this current state. When the search is in the
function foo, the return address on the runtime stack can
be either 03 or 05 for the corresponding call sites 02 and 04
in main. If the actual call site is from line 02 in the program,
then the return address is 03; thus, the FSM heuristic uses
an infeasible path and underestimates the distance, given
the current state.

3. IMPROVING ERROR DISCOVERY
We present a new heuristic to facilitate improved error

discovery. Our technique consists of two parts. First, we
refine the control flow representation to include context sen-
sitive information for a certain bound. Second, we extend
the FSM distance heuristic to dynamically prune the infea-
sible paths in the control flow representation by using the
information on the runtime stack

An augmented ICFG (AICFG) gives an accurate repre-
sentation of the calling context in procedure calls up to a
bounded stack depth of size k as specified by the user. If
k is set to be 0, then we obtain a regular ICFG. If k is
set to infinity, then we obtain a interprocedural inlined flow
graph (IIFG) [5]. An IIFG preserves the syntactic-semantic
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Figure 2: An extended example (a) Program with
nested functions (b) An AICFG for a program with
nested functions

relationship in an ICFG. In an IIFG, all the procedures are
inlined at their call sites to build a full context of the pro-
cedure call sequence. The FSM distance computed on an
IIFG is more accurate in its distance estimate; however, an
IIFG can be prohibitive in size for large programs with a
high degree of nested function calls. Our heuristic balances
computation resources in static construction of the AICFG
with accuracy in its heuristic estimate of the FSM distance.
The vertices in the AICFG are labeled with PC values, and
k return locations on the call stack.

The extended example shown in Figure 2(a) has three lev-
els of function calls, main → x → f → g and main → y →
f → g. For the purposes of this paper, we pick k = 1 to
simplify the presentation; although, this is not a require-
ment of our algorithm. An AICFG for the extended exam-
ple is presented in Figure 2(b). The procedure f is at depth
k = 2, but since procedures x and y are called only once,
the procedure f along with x and y, is fully inlined in the
graph. This means that procedures f, x, and y have the con-
text to be mapped to their distinct call sites. The vertex:
〈07, RA : 04〉 in the AICFG has context sensitive informa-
tion that it was called from PC value 03 and returns to PC
value 04 in procedure x. Procedure g is at depth 3, which
is greater than the specified bound of k = 1. Addition-
ally its predecessor, procedure f, is called more than once;
hence, procedure g is not inlined in the graph, as seen in
Figure 2(b). While model checking, if the current state is in
procedure g, then there is no context sensitive information
in the AICFG about which procedure called g. To retain
admissibility, the FSM distance heuristic computed on an
AICFG picks the most conservative path when posed with
a non-deterministic choice. This creates the same problem
of underestimation, as seen on the ICFG. We overcome this
problem by using information on the runtime stack which is



Algorithm: Extended FSM(state S)
1: /∗ d := 0 ∗/
2: /∗ distance := {} ∗/
3: Worklist := aicfgState(S)
4: while (Worklist) do
5: Remove sa from Worklist
6: srts := return statement(sa)
7: if error postdominates(sa) then
8: x := d + FSM(sa, error)
9: distance := distance ∪ {x}

10: break
11: if in scope error(sa) then
12: x := d + FSM(sa, error)
13: distance := distance ∪ {x}
14: d := d + FSM(sa, srts) + 1
15: return min(distance)

Figure 3: Pseudo Code for the Improved ICFG Al-
gorithm

availabe in the state generated during model checking be-
cuase the entire runtime stack of the program is a part of
the state. Our approach extracts the runtime stack from the
current state and unrolls it incrementally to simulate par-
tially constructing the IIFG to compute the heuristic. From
the state where the stack is fully unrolled, it computes the
FSM distance from that state to the error using the AICFG
and adds it to the heuristic. This gives a better estimate of
the distance to the error. The algorithm to compute the ex-
tended FSM heuristic is presented in Figure 3. The example
shown in Figure 2 is used to demonstrate the algorithm.

The variable distance is a set of possible estimates to the
error state, and variable d is a counter that keeps track of
the heuristic estimate in Figure 3. The function aicfgState
generates AICFG vertices from the PC value and return
addresses on the runtime stack of the current state in the
model checker.

Figure 4(a) visualizes the strategy for extracting the AICFG
vertices from a current state. The left side of Figure 4(a)
represents the values of the current state, and the right
side shows the AICFG vertices generated by the function
aicfgState for those values. For k = 1 the first AICFG ver-
tex concatenates the PC value and the return address on
top of the stack 〈09, RA : 08〉. This indicates that when a
return statement is encountered in the current subroutine,
it transfers flow of execution to a location in the program
where the PC value is 08. The next return address on the
runtime stack points to the preceding call site of the pro-
gram. On the next rts instruction, the control jumps to
PC value 04 in the program. Hence the next AICFG vertex
is 〈08, RA : 04〉. The function, aicfgState returns when the
stack is exhausted and the last AICFG vertex 〈02, (init)〉
is generated. In general terms, for an arbitrary k bound,
the AICFG vertex is derived from the first k return loca-
tions on the runtime stack and the PC. We first build the
AICFG statically, and then start model checking the pro-
gram. For a current state generated during model checking,
the aicfgState function generates a set of AICFG vertices
that represent a path from the start of the program to the
current state. The algorithm uses a Worklist to store these
AICFG vertices (line 3). We assume there is a single re-
turn point for each procedure. Experience has shown this
assumption to be true for most compilers.

The algorithm iterates through the Worklist till it is empty.
During each iteration, an AICFG vertex (sa) is removed
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Figure 4: Understanding the Improved ICFG Algo-
rithm (a) AICFG vertices generated from the run-
time stack (b) Control flow of a subroutine with an
error

from the Worklist (line 5). For each AICFG vertex, the func-
tion return statement returns another AICFG vertex (srts)
that corresponds to the return statement of the procedure
containing sa (line 6). The AICFG vertices representing the
return statements of procedures are marked statically while
building the AICFG. For the AICFG vertex 〈09, RA : 08〉,
which is in procedure g in Figure 2(b), the corresponding
srts is 〈0a, RA : 08〉.

The first condition in the algorithm checks whether the
error postdominates sa or not (line 7). In essence, it checks
if all paths from sa to srts pass through the error state. If
it does, there is no need to iterate through the rest of the
AICFG vertices. We compute the FSM distance from sa

to the error state, add to it to the heuristic counter (line
8), and append it to the set of possible estimates (line 9).
We break from our iteration (line 10) and return the low-
est estimate in the set distance (line 15). A second check
is performed to see if the error is in scope of the current
procedure. If there exists a path from sa to the error which
does not include srts, then the error is said to be in scope.
Consider the simple flow diagram in Figure 4(b), the error is
control dependent on a conditional branch. Based on which
branch is taken, we can either branch to the error vertex
or jump to the epilogue of the function. In such a case,
we need to consider the two options. First, the error can
be reached in the current procedure, second unrolling the
runtime stack further discovers a shorter path to the error.
If the error is in scope, we take the shortest FSM distance
amongst paths from sa to the error that precludes the return
statement. Otherwise regardless of whether the error is in
scope, we compute the FSM distance from sa to srts, add 1
to this value, to account for the outgoing edge from srts to
the return vertex, and then increment the heuristic counter
by this value (line 14). The processing of the last AICFG
vertex computes the FSM distance on the AICFG between
the AICFG vertex, at the top most level of the calling struc-
ture, and the error state. So even if the error is not in scope
of the procedures on the runtime stack, we find a path to
the error, assuming the error is reachable from the main pro-
cedure. After we finish iterating through the Worklist, we
return the smallest member of the distance set.

Let us consider a concrete example of how the algorithm
works. For the extended example in Figure 2(a), let the
current state be represented by the left side of Figure 4(a).
Based on the AICFG vertices generated for the current state,
the first sa is 〈09, RA : 08〉, and the corresponding srts is
〈0a, RA : 08〉. The error node is not part of the current



Table 1: States generated before error and time taken to find the error
Breadth First Search Depth First Search FSM distance Extended FSM distance

Hyman 3,550 : 1.70s 5,944 : 2.89s 2,715 : 1.33s 881 : 1.28s
Naive Dining-Phil2 19,013 : 7.33s 8,066 : 2.02s 22,701 : 13.38s 3,155 : 3.56s
Dining-Phil2 48,068 : 20.56s 33,523 : 10.52s 87,974 : 53.65s 6,535 : 6.95s
Moody Dining-Phil2 87,974 : 40.62s 33,523 : 10.09s 86,139 : 51.42s 6,535 : 7.01s
Naive Dining-Phil3 485,648 : 3m23s 382,359 : 1m48s 608,595 : 5m52s 369,328 : 9m42s
Naive Dining-Phil3.1 18,281 : 9.45s 10,667 : 2.93s 12,674 : 8.69s 9,341 : 14.62s
Dining-Phil3.1 77,777 : 37.88s 75,947 : 22.58s 40,327 : 26.81s 34,328 : 52.60s
Moody Dining-Phil3.1 118,979 : 59.44s 68,233 : 20.33s 51,163 : 34.83s 40,749 : 1m3s

procedure, so the two checks on postdominance and scoping
fail. The FSM distance between sa and srts is 1, we add
an additional 1 to it for the outgoing edge to the return
vertex, so the value of d is set to 2. The next AICFG vertex
processed is 〈08, RA : 04〉. The sa and the srts are the same
in this case. The FSM distance is 0, but we add 1 to d to
account for the outgoing edge from the return points. The
value of d is now 3. We iterate through the loop until we
get to the last AICFG vertex, 〈02, (init)〉, and the value d
is 4 at this point. The error now postdominates the sa. The
FSM distance from 〈02, (init)〉 to the error is 7. This value
is added to the existing d and appended to the distance set.
The distance set has a single element of value 11 that is
returned as the heuristic estimate. The estimate is the true
distance in this case.

The extended FSM distance algorithm can be used on
any flow graph. It dynamically reconstructs a part of the
IIFG on both an ICFG, and an AICFG. Now the question
becomes: why do we need an AICFG? The extended FSM
distance algorithm is limited by the information on the run-
time stack. It can construct only part of the IIFG based
on the return addresses on the runtime stack. Once the call
stack is fully unrolled, the heuristic estimate is dependent
on the accuracy of the control-flow representation. Consider
the example in Figure 2(a), the extended heuristic gener-
ates the IIFG up to the vertex 〈02, (init)〉. From this ver-
tex to the error, the FSM distance is computed directly on
the AICFG without further context information. Suppose
there was another procedure baz which was called twice af-
ter vertex 〈02, (init)〉 and before the error. On the ICFG,
the return node from baz will have two outgoing edges; thus,
while calculating the FSM distance, the most conservative
path will be picked. This leads to the same underestimation
shown earlier. If we compute the heuristic on an AICFG,
depending on our value of k, we get a better estimate of the
distance to the error. The extended FSM distance heuristic
is admissible and consistent. Its proof follows the one pre-
sented in [3]. The AICFG is a more refined representation
of the program based on the depth of the calling context.
The infeasible paths in the AICFG encountered after the un-
rolling of the stack will always underestimate the distance
to the error and this do not violate admissiblity and consis-
tency.

4. RESULTS AND CONCLUSIONS
The results from a Pentium III 1.8 Ghz processor with

1 GB of RAM are shown in Table 1. These were run on
Estes [8], with a 6.1.1 version of the gnu debugger using the
m68hc11 back-end simulator. We show the total number
of states enumerated before finding the error state, and we
measure total wall clock time from the start of the programs

till the error state is found. Each cell in the table has the
format 〈Number of states〉 : 〈T ime taken〉. The tests are
performed on a set of benchmarks consisting of models with
concurrency errors. For all testing purposes the bound of k
was chosen to be 1 in the AICFG.

The extended FSM heuristic outperforms the regular FSM
heuristic by generating fewer number of states in our bench-
marks before error discovery. There is an overhead of build-
ing the AICFG, extracting the runtime stack, dynamically
reconstructing the IIFG, and computing the heuristic on it.
This causes the total running time to increase in some of the
models. In large systems, this overhead is acceptable given
we find an error before the memory runs out.
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