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main: 
01:  ldx #1 
02:  call foo 
03:  add x,1 
04:  call foo 
05:   error 
foo: 
06:  pshx 
07:  pulx 
08:  rts error 
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Fig 3: A program that calls foo 
twice and checks for an error 

Fig 4: An ICFG for the program 
in Fig 3 

•  The use of embedded systems has become ubiquitous in recent times 
•  Growing complexity makes ad-hoc testing techniques insufficient  
•  Model checking exhaustively searches program states as shown in Fig. 1 
•  Computation resources often run out before finishing the search 
•  Guided search ranks states in order of interest with a heuristic 
•  Guided search explores interesting states first as in Fig. 2 
•  The goal is to find an error before running out of computation resources 
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•  At function g, there is no knowledge of which caller invoked g in Fig. 11 
•  At depth greater than k, same underestimation problem as an ICFG 

States Generated before Error Discovery 
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•  A visible decrease in number of states 
•  FSM guided search degenerates into a random search in some models  

•  Overhead in following call trace 
•  EFSM guided search is slower even though it expands fewer states 
•  Optimizes space over time 
•  Future work looks at the analysis overhead of the algorithm 

•  Breadth-first search orders the search frontier in a FIFO as shown in Fig. 1 
•  Guided search orders the frontier in a priority queue as shown in Fig. 2 
•  The heuristic values on the states is the estimated distance to an error 
•  Explore states estimated closer to an error first 

Fig 1: Breadth First Search Fig 2: Guided Search 

•  The EFSM heuristic does a forward analysis from the current state (q0) on the AICFG in Fig. 14 to see if an error is reachable within the scope of the function g 

•  If an error is not reachable, or to find a shorter distance to the error, the EFSM heuristic unrolls the call trace by a single call to q1 in Fig. 12 

•  The EFSM heuristic again does a forward analysis on the AICFG in Fig. 14 at q2 on all unique paths in the function f that might lead to an error 

•  Repeat the pattern of unrolling the call trace and then doing a forward analysis on the AICFG until the call trace is exhausted 

•  The EFSM combines the dynamic information on the runtime stack in Fig. 13 with the static information on the AICFG in Fig. 14 to get a better heuristic estimate 

•  The ICFG has no context information 
•  Cannot resolve the caller of foo on line 02 in Fig. 3 
•  FSM heuristic takes most conservative path as shown Fig. 5 
•  Underestimates the true distance to the error as shown in Fig. 6 
•  Need context information for callees to identify callers 
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•  FSM builds an Interprocedural Control Flow Graph (ICFG) statically 
•  A depth-first traversal of a program (Fig. 3) builds the ICFG shown in Fig. 4 
•  FSM maps the current state to a vertex in the ICFG as shown in Fig. 5 
•  It computes shortest path from a current state to an error state on the ICFG  
•  The length of the shortest path is returned as the heuristic estimate 
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Fig 5: Path computed after the 
first call to foo : 3 steps 
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Fig 6: True Path to the error after 
the first call to foo : 8 steps 
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Fig 7: An AICFG for the program 
in Fig 3 

Fig 8: Path computed after the first 
call to foo on the AICFG : 8 steps 

•  An AICFG includes a bounded (k) calling context of function calls 
•  The bound k is specified by the user 
•  The program now has k slots for return addresses in the runtime stack 
•  A traversal of the program in Fig. 3 with k=1 creates the AICFG in Fig. 7 
•  The vertex (06,03) in Fig. 7 has information that it was called from line 02 

•  The caller of foo can be resolved by the additional context information  
•  There is no underestimation in the path computed in Fig. 8 
•  Distance estimate computed on an AICFG is more accurate than the FSM 
•  For large k’s the size of the AICFG can become prohibitive 
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•  The context information in the AICFG is limited by the bound 
•  The AICFG for the program in Fig. 9, with a k=1 is shown in Fig. 11 
•  The reduced call graphs in Fig. 10 shows the lost context in function g 

Fig 11:  AICFG for Fig 9; path computed after first call to g is 4 

Fig 9: A program with nested  
functions 

Fig 10: Reduced call graphs with and 
without full context information 

1 

2 

3 4 

•  The extended FSM (EFSM) distance heuristic recovers calling context as shown in Fig. 12 by using the return addresses for function calls in the runtime stack 

•  The EFSM takes the runtime stack and extracts AICFG vertices as shown in Fig. 13 that represent the call trace to the current point of execution 
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Fig 13: Extracting AICFG vertices based 
on the values of the runtime stack 
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Fig 12: The call trace Fig 14:  AICFG for Fig 9; path computed after first call 
to g by the EFSM is 11 steps 
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•  EFSM is admissible and consistent 
•  EFSM results in a better estimate of the distance to the error 
•  Explores fewer states before error discovery for a set of benchmark examples 
•  EFSM does better in models with densely connected transition graphs 
•  Extra memory used for building and storing the AICFG is negligible 
•  Structural heuristics make error discovery more tractable 
•  EFSM can be improved further by using data flow information 


