
DESIGNED & PRINTED BY:

www.POSTERPRESENTATIONS
.com

A Context-Sensitive Structural Heuristic for Guided Model Checking
Neha Rungta and Eric Mercer
Brigham Young University, Provo, UT

5. Extended FSM Distance Heuristic

 2. FSM Distance Heuristic

1. Introduction

 4. Accuracy depends on k-bound

 3. Augmented Interprocedural Control Flow
Graph (AICFG)

 6. Results

 7. Conclusions Contact Information

main:
01: ldx #1
02: call foo
03: add x,1
04: call foo
05: error
foo:
06: pshx
07: pulx
08: rts error

01

02

03

04

05

main

foo 06

07

08

Fig 3: A program that calls foo
twice and checks for an error

Fig 4: An ICFG for the program
in Fig 3

•  The use of embedded systems has become ubiquitous in recent times
•  Growing complexity makes ad-hoc testing techniques insufficient
•  Model checking exhaustively searches program states as shown in Fig. 1
•  Computation resources often run out before finishing the search
•  Guided search ranks states in order of interest with a heuristic
•  Guided search explores interesting states first as in Fig. 2
•  The goal is to find an error before running out of computation resources

01
init

02
init

03
init

06
03

07
03

08
03

06
05

07
05

08
05

04
init

05
init

f x x f
g

1:call x
init

3:call f
2

7:call g
4

9
8

2:call y
init

5:call g
error

7:call g
6

error

main

y f

a: rts
8

8: rts
4

4: rts
2

8: rts
6

6: rts
error

x f

•  At function g, there is no knowledge of which caller invoked g in Fig. 11
•  At depth greater than k, same underestimation problem as an ICFG

States Generated before Error Discovery

0
20000
40000
60000
80000

100000
120000
140000

Hym
an

N-D
ini

ng
Phil

2

Dini
ng

-P
hil

2

M-D
ini

ng
-P

hil
2

N-D
ini

ng
-P

hil
3 (

bp
)

Dini
ng

-P
hil

3 (
bp

)

M-D
ini

ng
-P

hil
3(b

p)

BFS
DFS
FSM
Extended FSM

0
10
20
30
40
50
60
70

Hym
an

N-D
ini

ng
Phil

2

Dini
ng

-P
hil

2

M-D
ini

ng
-P

hil
2

N-D
ini

ng
-P

hil
3 (

bp
)

Dini
ng

-P
hil

3 (
bp

)

M-D
ini

ng
-P

hil
3(b

p)

BFS
DFS
FSM
Extended FSM

Time in seconds before Error Discovery

Verification and Validation Laboratory
Computer Science Department
Brigham Young University
Provo, UT 84602

Neha Rungta, neha@byu.edu
Eric Mercer, egm@cs.byu.edu

http://vv.cs.byu.edu/

f x x f
g

1:call x
init

3:call f
2

7:call g
4

9
8

2:call y
init

5:call g
error

7:call g
6

error

main

y f

a: rts
8

8: rts
4

4: rts
2

8: rts
6

6: rts
error

x f

•  A visible decrease in number of states
•  FSM guided search degenerates into a random search in some models

•  Overhead in following call trace
•  EFSM guided search is slower even though it expands fewer states
•  Optimizes space over time
•  Future work looks at the analysis overhead of the algorithm

•  Breadth-first search orders the search frontier in a FIFO as shown in Fig. 1
•  Guided search orders the frontier in a priority queue as shown in Fig. 2
•  The heuristic values on the states is the estimated distance to an error
•  Explore states estimated closer to an error first

Fig 1: Breadth First Search Fig 2: Guided Search

•  The EFSM heuristic does a forward analysis from the current state (q0) on the AICFG in Fig. 14 to see if an error is reachable within the scope of the function g

•  If an error is not reachable, or to find a shorter distance to the error, the EFSM heuristic unrolls the call trace by a single call to q1 in Fig. 12

•  The EFSM heuristic again does a forward analysis on the AICFG in Fig. 14 at q2 on all unique paths in the function f that might lead to an error

•  Repeat the pattern of unrolling the call trace and then doing a forward analysis on the AICFG until the call trace is exhausted

•  The EFSM combines the dynamic information on the runtime stack in Fig. 13 with the static information on the AICFG in Fig. 14 to get a better heuristic estimate

•  The ICFG has no context information
•  Cannot resolve the caller of foo on line 02 in Fig. 3
•  FSM heuristic takes most conservative path as shown Fig. 5
•  Underestimates the true distance to the error as shown in Fig. 6
•  Need context information for callees to identify callers

12 9 2

4 1

7 8 e

1

e

•  FSM builds an Interprocedural Control Flow Graph (ICFG) statically
•  A depth-first traversal of a program (Fig. 3) builds the ICFG shown in Fig. 4
•  FSM maps the current state to a vertex in the ICFG as shown in Fig. 5
•  It computes shortest path from a current state to an error state on the ICFG
•  The length of the shortest path is returned as the heuristic estimate

error

01

02

03

04

05

main

foo 06

07

08

error

01

02

03

04

05

main

foo 06

07

08

Fig 5: Path computed after the
first call to foo : 3 steps

1

2

3

Fig 6: True Path to the error after
the first call to foo : 8 steps

1,6

2,7
3

4

5

8

01
init

02
init

03
init

06
03

07
03

08
03

06
05

07
05

08
05

04
init

05
init

1 2

3

6

8

4
5 7

Fig 7: An AICFG for the program
in Fig 3

Fig 8: Path computed after the first
call to foo on the AICFG : 8 steps

•  An AICFG includes a bounded (k) calling context of function calls
•  The bound k is specified by the user
•  The program now has k slots for return addresses in the runtime stack
•  A traversal of the program in Fig. 3 with k=1 creates the AICFG in Fig. 7
•  The vertex (06,03) in Fig. 7 has information that it was called from line 02

•  The caller of foo can be resolved by the additional context information
•  There is no underestimation in the path computed in Fig. 8
•  Distance estimate computed on an AICFG is more accurate than the FSM
•  For large k’s the size of the AICFG can become prohibitive

main:
1 call x
2 call y
error

f:
7 call g
8 rts

x:
3 call f
4 rts

y:
5 call f
6 rts

g:
9 xyz
a rts

x y

f f

g

main

x y

f f

g g

main

•  The context information in the AICFG is limited by the bound
•  The AICFG for the program in Fig. 9, with a k=1 is shown in Fig. 11
•  The reduced call graphs in Fig. 10 shows the lost context in function g

Fig 11: AICFG for Fig 9; path computed after first call to g is 4

Fig 9: A program with nested
functions

Fig 10: Reduced call graphs with and
without full context information

1

2

3 4

•  The extended FSM (EFSM) distance heuristic recovers calling context as shown in Fig. 12 by using the return addresses for function calls in the runtime stack

•  The EFSM takes the runtime stack and extracts AICFG vertices as shown in Fig. 13 that represent the call trace to the current point of execution

09
08

08
04

04
02

02
init

Return Add : 02

Return Add : 04

Return Add : 08

PC Value : 09

Stack frame for
main

Stack frame for x

Stack frame for f

Stack frame for g

q0

q1

q2

q3

Fig 13: Extracting AICFG vertices based
on the values of the runtime stack

09
08

08
04

04
02

02
init

q0

q1

q2

q3

Fig 12: The call trace Fig 14: AICFG for Fig 9; path computed after first call
to g by the EFSM is 11 steps

1

2 3 4

5 6

7
8

9

10 11

•  EFSM is admissible and consistent
•  EFSM results in a better estimate of the distance to the error
•  Explores fewer states before error discovery for a set of benchmark examples
•  EFSM does better in models with densely connected transition graphs
•  Extra memory used for building and storing the AICFG is negligible
•  Structural heuristics make error discovery more tractable
•  EFSM can be improved further by using data flow information

