A Context-Sensitive Structural Heuristic for Guided Model Checking

Neha Rungta and Eric Mercer
Brigham Young University, Provo, UT

1. Introductio

« The use of embedded systems has become ubiquitous in recent times

« Growing complexity makes ad-hoc testing techniques insufficient

* Model checking exhaustively searches program states as shown in Fig. 1
+ Computation resources often run out before finishing the search

* Guided search ranks states in order of interest with a heuristic

+ Guided search explores interesting states first as in Fig. 2

« The goal is to find an error before running out of computation resources

Fig 1: Breadth First Search

Fig 2: Guided Search

« Breadth-first search orders the search frontier in a FIFO as shown in Fig. 1
« Guided search orders the frontier in a priority queue as shown in Fig. 2

« The heuristic values on the states is the estimated distance to an error

« Explore states estimated closer to an error first

2. FSM Distance Heuristic

+ FSM builds an Interprocedural Control Flow Graph (ICFG) statically

* A depth-first traversal of a program (Fig. 3) builds the ICFG shown in Fig. 4
+ FSM maps the current state to a vertex in the ICFG as shown in Fig. 5

« It computes shortest path from a current state to an error state on the ICFG
« The length of the shortest path is returned as the heuristic estimate

main: main @
01: Idx #1
02: call foo
03: add x,1
04: call foo
05: error
foo:

06: pshx
07: pulx
08: rts error

foo

92026

® @® ®

Fig 3: A program that calls foo
twice and checks for an error

Fig 4: An ICFG for the program
inFig 3

main

=5
o
=]

o
o

e

5

® ®® &G
w
o
©

error 3 error

Fig 6: True Path to the error after
the first call to foo : 8 steps

8

Fig 5: Path computed after the
first call to foo : 3 steps

* The ICFG has no context information

« Cannot resolve the caller of foo on line 02 in Fig. 3

+ FSM heuristic takes most conservative path as shown Fig. 5

« Underestimates the true distance to the error as shown in Fig. 6
+ Need context information for callees to identify callers

3. Augmented Interprocedural Control Flow

Graph (AICFG)

+ An AICFG includes a bounded (k) calling context of function calls

+ The bound k is specified by the user

« The program now has k slots for return addresses in the runtime stack

* Atraversal of the program in Fig. 3 with k=1 creates the AICFG in Fig. 7
« The vertex (06,03) in Fig. 7 has information that it was called from line 02

Fig 7: An AICFG for the program
inFig 3

Fig 8: Path computed after the first
call to foo on the AICFG : 8 steps

« The caller of foo can be resolved by the additional context information

« There is no underestimation in the path computed in Fig. 8

« Distance estimate computed on an AICFG is more accurate than the FSM
« For large K's the size of the AICFG can become prohibitive

. 4. Accuracy depends on k-bound

« The context information in the AICFG is limited by the bound
* The AICFG for the program in Fig. 9, with a k=1 is shown in Fig. 11
« The reduced call graphs in Fig. 10 shows the lost context in function g

main: 3

1 call x Tcallg
2cally 8rts
error

X: y: [:H
3callf |5callf |9xyz
4 rts 6 rts arts

Fig 9: A program with nested
functions

Fig 10: Reduced call graphs with and
without full context information

Fig 11: AICFG for Fig 9; path computed after first call to g is 4
« At function g, there is no knowledge of which caller invoked g in Fig. 11

« At depth greater than k, same underestimation problem as an ICFG

5. Extended FSM Distance Heuristic

Stack frame for
main

Return Add : 02

Stack frame for x

Return Add : 04

Stack frame for f

Return Add : 08

Stack frame for g

+ The extended FSM (EFSM) distance heuristic recovers calling context as shown in Fig. 12 by using the return addresses for function calls in the runtime stack

+ The EFSM takes the runtime stack and extracts AICFG vertices as shown in Fig. 13 that represent the call trace to the current point of execution

PC Value : 09

Fig 12: The call trace

States Generated before Error Discovery

140000
120000
100000 — |=BFS
80000 I |sDFs
60000 1l |[oFsm
40000 - — W H 0 Extended FSM
20000
0 Ja bk Jhm
NN NN
e R R
S o &S
ISR R R S
IR
IS

« Avisible decrease in number of states
+ FSM guided search degenerates into a random search in some models

Conclusi

+ EFSM is admissible and consistent

+ EFSM results in a better estimate of the distance to the error

« Explores fewer states before error discovery for a set of benchmark examples
+ EFSM does better in models with densely connected transition graphs

+ Extra memory used for building and storing the AICFG is negligible

+ Structural heuristics make error discovery more tractable

+ EFSM can be improved further by using data flow information

Fig 13: Extracting AICFG vertices based
on the values of the runtime stack

+ The EFSM heuristic does a forward analysis from the current state (q0) on the AICFG in Fig. 14 to see if an error is reachable within the scope of the function g
« If an error is not reachable, or to find a shorter distance to the error, the EFSM heuristic unrolls the call trace by a single call to q1 in Fig. 12

+ The EFSM heuristic again does a forward analysis on the AICFG in Fig. 14 at q2 on all unique paths in the function f that might lead to an error

« Repeat the pattern of unrolling the call trace and then doing a forward analysis on the AICFG until the call trace is exhausted

* The EFSM combines the dynamic information on the runtime stack in Fig. 13 with the static information on the AICFG in Fig. 14 to get a better heuristic estimate

Fig 14: AICFG for Fig 9; path computed after first call
to g by the EFSM is 11 steps

Time in seconds before Error Discovery

50 Hi U [aBFs
40 —{HH | |=DFs
HHH|E [oFsm
H 0 Extended FSM

+ Overhead in following call trace

+ EFSM guided search is slower even though it expands fewer states
+ Optimizes space over time

« Future work looks at the analysis overhead of the algorithm

Contact Informatio

Verification and Validation Laboratory
Computer Science Department
Brigham Young University

Provo, UT 84602

Neha Rungta, neha@byu.edu
Eric Mercer, egm@cs.byu.edu

http://vv.cs.byu.edu/

