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Abstract. Embedded software verification is an important verification
problem that requires the ability to reason about the timed semantics of
concurrent behaviors at a low level of atomicity. The level of atomicity
is the smallest execution block (such as a machine instruction or a C
instruction) that cannot be split by an interrupt. Combining a cycle-
accurate debugger with model checking algorithms provides an accurate
model of software execution at the machine-code level while supporting
concurrency and allowing abstractions to manage state explosion. We
report on the design and implementation of such a model checker using
the GNU debugger (gdb) with different processor backends. A significant
feature of the resulting tool is that we can adjust the level of atomicity
during the model checking run to reduce state explosion while focusing
on behaviors that are likely to generate an error.

1 Introduction

Embedded software for small devices forms an important and unique verifica-
tion problem. Embedded systems pervade many aspects of society and their
complexity is growing quickly with processing power. If processor design con-
tinues to follow Moore’s law, then current test strategies will not be able to
sufficiently validate safety and capital critical embedded systems.

The principle challenge to embedded software verification is concurrency.
Without fine-grain control of scheduling decisions in the operating system, it
is not possible to explore the behaviors of concurrent interactions with typical
debugging tools. A debugger is a familiar framework for software testing that
closely reflects the behavior of the actual system because it is either running
directly on the target hardware or on a high-fidelity back-end simulator. When
running on native hardware, the debugger often uses hardware registers and
traps, when necessary, to control program flow without significantly altering
run-time behavior. Recent work in debugger and virtual machine technology
implements reverse execution to step backward through code [21]. Although a
debugger provides several mechanisms to control program execution and alter
program state, it does not provide mechanisms to adequately explore concurrent
interactions. As such, a debugger is not sufficient to validate embedded software
with concurrency through to threads, processes, or interrupts.



A model checker is well suited to the systematic exploration of concurrent
behaviors. Several techniques for software model checking are actively being
pursued. The most common approach applies conservative abstractions to the
high-level programming language [8, 2]. If no errors are found, then the program
under test is error-free (relative to the given specification, of course). Coun-
terexamples may be either infeasible or feasible. Infeasible counterexamples are
used to iteratively refine the abstraction and feasible counterexamples are re-
turned to the user. This approach is particularly successful in verifying control
intensive code in which conditional expressions do not depend on extensively ma-
nipulated data values. Another approach applies bounded model checking to C
programs and can verify buffer overflows, pointer safety, user defined assertions,
and language consistencies [4, 5]. Other approaches translate the software under
test into the formally defined input language of an existing model checker [17,
19, 1]. Language extensions are sometimes needed to facilitate the translation
since the language semantics are not always directly supported by the existing
framework [6]. A recent approach uses symbolic execution to verify properties
of algorithms [16].

Each of the preceding approaches assume that the high-level language con-
structs are atomic operations. This assumption is adequate for the class of soft-
ware properties verified in the various tools. In this work, we are interested in
a concurrency model that more accurately matches the behavior of programs
running on a given target processor. In most instruction set architectures, in-
terrupts, due to concurrency or external inputs, can be taken between machine
instructions and many C instructions are implemented with more than one ma-
chine instruction.

There are two approaches to software model checking that are directly per-
tinent to reasoning at a finer-grained level of concurrency. The first approach
model checks the actual software implementation by instrumenting either a sim-
ulator or the virtual machine for the target architecture [22, 12]. This approach
retains a high-fidelity model of the target execution platform. And, in the case
of a Java virtual machine, there is low-level control of scheduling decisions. The
second approach directly instruments the machine-code of the program and runs
an analysis at speed on the native hardware [13, 15, 7]. Testing at speed can boost
performance in state generation, and the overhead for instrumentation has been
shown to be acceptable in large programs [20, 14]; however, timing information
is skewed from the instrumentation. The work in [7] actually requires the source
code to be annotated with model checking hooks for the instrumentation, and in
some instances, access to the actual source code is not possible. These low-level
approaches tie a tool directly to a target architecture or language, and the lack
of abstraction leads to state explosion in the search space.

The work in this paper is based on this approach to software model checking
but seeks to improve the process by interfacing with a standard debugger rather
than working through a virtual machine or instrumenting the code under test.
The central contribution is a better understanding of the challenges and oppor-
tunities of model checking machine code using a debugger. This understanding
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is based on our extension of the GNU debugger (gdb) which supports model
checking for a variety of target processors at a variety of dynamically tunable
atomicity levels. A debugger provides an accurate model of software execution
at the machine-code level while allowing abstractions to manage state explosion.
Furthermore, working at the machine-code level through a modular debugger
decouples the model checker from a particular high-level language and target
architecture. Note that the debugger does not solve the state explosion prob-
lem directly; rather, it provides mechanisms that can be used to mitigate state
explosion by altering the atomic step level of the model checker.

2 An Example

We illustrate the advantages of working at the machine-code level with a pro-
gram, called SSE, that contains a simple serialization error. The error is man-
ifest by a data inconsistency. Although the SSE program is somewhat naive,
it illustrates the kinds of errors that can only be found when reasoning about
concurrency at the machine-code level. In practice, more complex errors similar
to the one in SSE arise when provably mutual exclusion techniques are either
used or implemented incorrectly.

Figure 1 contains C and machine code versions of SSE. The machine code is
a simplified version of the code generated by the GNU C compiler (gcc) for the
Motorola 68hc11 processor. Simplifications are made strictly for readability in
the figure. The analyzed code is the unmodified gcc output. The while loop in the
C program contains an if statement that compares the readings of two sensors.
If the readings are not equal, then an alarm is activated. The sensor readings are
updated periodically by an interrupt handler (not shown) that copies readings
from two input ports into the variables reading[0] and reading[1].

In the assembly code for SSE, which is shown on the right side of Figure 1,
the guard in the if statement is implemented with three instructions. The first
instruction loads reading[0] (located at address 0x108e) into register D. The
second instruction compares the contents of register D with reading[1] (located
at address 0x1090). The third instruction branches past the alarm activation
code if the values are equal. If the interrupt which updates reading[0] and
reading[1] happens between the load and compare instructions, then the alarm

Fig. 1. The SSE example expressed in both C and assembly code. The guard in the
if statement is actually implemented with three assembly instructions. Assembly code
generated by the GNU C compiler for the Motorola 68hc11 processor.

3



may be incorrectly activated. The alarm may be incorrectly activated because
one reading is stored in a register and the other in memory when the interrupt
updates the contents of both in memory. Even if both readings are changed to
the same value in memory, the now stale value in the register will be different.
This particular interleaving is unreachable if the comparison in the guard in the
if statement is modeled as an atomic comparison.

Of course, the serialization error in SSE can be eliminated by providing
mutually exclusive access to the reading variables or by performing the check
in the interrupt handler rather than in the busy-wait loop. If a lock is used to
resolve the issue, then the lock can be implemented using any of a number of
mutual exclusion algorithms that commonly appear as case studies in the model
checking literature. The central verification issue addressed in this paper is not
the correctness of mutual exclusion algorithms in general but the issue of whether
or not a mutual exclusion algorithm was correctly implemented and used.

The SSE example can also be used to demonstrate the utility of including
time in the processor execution model. The data inconsistency error in SSE
can be eliminated by carefully scheduling the interrupts to occur only at safe
locations between specific pairs of instructions. A fragment of machine code that
preserves mutual exclusion using timing is shown in Figure 2. In the 68hc11,
periodic interrupts are scheduled by writing a 16-bit value to a special timer
“register” (two bytes stored at memory location 0x101c in this case) and setting
a bit in a control register to enable the real-time interrupt. The interrupt is
triggered when the free running counter is equal to the value written in the timer
register. The free running counter is incremented by one in every clock cycle. The
interrupt is serviced at the next instruction boundary after its corresponding
interrupt flag is raised. The interrupt service routine clears the interrupt flag
and schedules the next interrupt by writing a new value into the timer register.
The new value is typically calculated by adding a fixed offset to the present
value of the free running counter. Later, we will compare the model checking
results for the timed version of SSE with the behavior of the same program on
the target hardware. In all cases, the predicted behavior precisely matches the
actual behavior.

The execution of the guard and body of the while loop in SSE requires
22 clock cycles. Starting at the instruction on line 0x8053, which sets the next
time-out value, the interrupt handler requires another 115 clock cycles before
it returns control back to the interrupt point in the while loop. This timing
relationship is shown in Figure 2. If the interrupt that update reading[0] and
reading[1] occurs with a period of d = 22x + 115 cycles (for values of x such
that d is less than 216− 1), then the update interrupt will alternate between the
instructions at 0x80bf and 0x80cf. These are “safe” locations in which to update
the reading variables. Another important aspect of this example is the amount
of time that passes between the scheduling of the first interrupt and entry in the
while loop. This delay fixed the location of the first interrupt in the while loop
but is omitted from Figure 2 for clarity.
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Fig. 2. Using timing to avoid the serialization error in the SSE example.

In practice, this approach to mutual exclusion is advantageous because it
does not require locking protocols (which can degrade important performance
metrics, such as response time). This approach is difficult to implement, without
automated verification support, because it is conceptually difficult to correctly
reason about timed concurrent behavior. A model checker that allows reason-
ing about timed concurrent behavior may extend design capacity by providing
automated support for mutual exclusion that depends on timing. The goal of
this work is to develop models and techniques to verify these types of systems
and properties. Rather than create a processor model in an existing input lan-
guage for a model checking tool, however, we are going to use the actual target
processor hardware through a debugger.

3 State Enumeration by Debugger

The state enumeration process is inspired by, and closely resembles, state gen-
eration in the JPF2 and StEAM tools in that they instrument virtual machines
to perform model checking tasks [22, 12]. In this case, the machine is real, not
virtual, and the interface to the machine (or simulator) is a debugger. There are
two principle tasks in state enumeration for explicit state model checking that
the debugger needs to support: backtracking and resolving nondeterminism. In
this section, we discuss the architecture of the resulting tools and how we deal
with each of these tasks.

The general architecture for the model checker is shown in Figure 3(a).
Roughly speaking, there are five major components to the architecture: the state,
hash-table, processor, environment, and search models. We use the term “model”
to indicate a generic representation of a particular component. The interface to
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each model is designed to allow flexibility in a manner similar to that of the
Bogor framework [19].

3.1 State and Hash-table Models

The state model represents the complete state of the processor and environment.
It interfaces with the hash-table model using a linearize function which converts
the state into an array of bytes. The state model is processor dependent; al-
though, a generic configurable state model is provided that features commonly
found in microprocessors including general purpose registers, control registers,
counters and memory. The interface exported by this model can be redefined
to meet the verification requirements of a given program or target processor.
For example, a common specialization implements redefines the treatment of
read-only registers.

The hash-table model interfaces with the state model through the one-way
linearize function which, as mentioned previously, converts the state into an ar-
ray of bytes for storage. This split between the state model and the hash-table
model decouples the representation of the state vector in state generation and
storage for duplicate detection. Such a split simplifies the implementation of dif-
ferent hash table architectures and storage disciplines. For example, super-trace
(bit-state hashing) and hash-compaction can be implemented in the hash-table
model without affecting the state model. The current implementation supports
a collapse compression option [11, 9].

Although the state and hash-table models simplify the implementation of
symmetry and partial order reductions, the implementation of certain symme-
try and partial order reductions are more difficult if the operating system is part
of the software artifact under test. If the operating system is not part of the
software artifact, then standard implementation techniques that rely on access
to operating system data structures can be applied. If, however, the operat-
ing system is included in the software under test, then it is more challenging
to recognize symmetries because the necessary operating system datastructures
are scattered blindly throughout memory in the state model. A specialization
is required to extract the thread and heap information from the state model.
This same argument also holds when discussing partial order reductions. Inde-
pendence and visibility are tied to actions common between threads; thus, an
understanding of threads must be extracted from the raw data. Debugging hooks
in the machine code can facilitate access to this data but extra work is required.

3.2 Processor Model

The processor model is the execution framework for the target architecture. In
the current implementation, we use version 6.1 of the GNU debugger (gdb) for
the execution framework. This version of the debugger is easily reconfigured
for cross-platform development using a collection of freely available back-end
simulators. The actual input to the simulator, and hence the model checker, is
a raw binary file in either elf or a.out format. The binary file may or may not
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include debugging hooks to relate the machine-code to the high-level language
from which it was compiled. The debugger can relate properly annotated machine
code to a variety of high-level languages such as C, C++, Fortran and Ada.

The creation of a processor model is a pivotal point in the decision to create
a new model checker rather than write processor models for use in another
model checker, such as SPIN or Bandera. The central issue is the amount of
work required to both create an accurate model of a processor architecture and
implement the debugging features found in a debugger but not in any model
checker.

The key feature found in a debugger, but not in a model checker, is the
ability to supporting state generation at different levels of atomicity that can be
changed during verification. Doing so in an existing model checker would require
a significant rewrite. Currently, the actual steps the machine takes to update
counters, process interrupts, etc. are invisible to the model checker. Moreover,
we only record states at debugger break points, and these points can be defined
in a variety of ways. The step level can be machine-code, high-level language,
branch-point [3], or a mixed mode and all steps can be made conditional on
run-time data values. Stepping at the branch-point level stops the debugger
at points of nondeterminism that require an environment response. The mixed
mode operates in any of the three levels and can be used to force the debugger to
continue program execution until the program state satisfies a break point. This
is useful in executing the program across system calls or program states that
are of no interest to the property being verified. Stepping through library calls
allows one to accurately determine the effect of a library call on the property
under test.

Modeling the processor in an existing framework is itself a challenge be-
cause some processor behaviors are neither simply described nor simply im-
plemented. Presumably, leveraging the effort expended to create an accurate
simulator rather than writing a new one from scratch frees one to focus on
other issues. Some of the more difficult processor functions include interrupt
priority resolution, interrupt register register stacking and control register up-
dates. Other aspects of processor execution, such as instruction interpretation
are straightforward if not monotonous.

The vgdb debugger interface to the processor model in Figure 3(a) provides
the backtracking facility necessary for explicit state enumeration . The inter-
face takes a state model and loads it into the processor through the debugger.
The debugger then turns control over to the target program which starts exe-
cution at the program counter in the loaded state. The debugger either steps
at the machine-code level, the high-level language level, or until it runs to a
breakpoint depending on the search model and user configuration. When the
debugger stops, the model checker reads the resulting state from the debugger
into the state model. Only modified parts of the state are updated in the state
model. This saves time but still requires scanning the entire contents of memory
in the debugger. This process can be further optimized with a map that identifies
portions of memory that are either read-only, unaffected by the program under
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test, or simply out of bounds. This information is given to the model checker at
runtime along with the program to verify and its properties.

The management of read-only and clear-on-write registers is a challenge in
model checking with a debugger. The free running counter used to track the
passage of time in the m68hc11 processor is an an example such a read only
register. This register can only be set at boot time or when the processor is
in test mode. The register that marks interrupt arrives in the m68hc11 is an
example of a clear-on-write register.

When using a simulator, read-only and special control registers can be made
arbitrary writable by suitably modifying the simulator. GNU gdb is well suited to
this because it provides call-backs to implement all of the debugger functions in a
simulator including a special interface to send commands directly to a simulator.
For example, we modified the back-end simulator for the m68hc11 to include a
command that puts the simulator in a mode that bypasses the write logic for
special control registers such as those used for interrupt flags. When writing to
these registers, rather than clearing the flags to acknowledge the interrupts, the
simulator sets the flags.

Writing to read-only and special control registers can be simulated in hard-
ware by carefully manipulating the state model. For example, as mentioned
previously, the free running counter in the m68hc11 is read-only, but we need
to control this register because it affects the firing of real-time interrupts. To
address this issue, the state model is specialized to store the difference between
the current value of a timer register and the free running counter rather than
the actual value of the timer register. When a state is loaded in and out of the
debugger, the real-time interrupts are set to the current value of the real-time
counter plus the difference stored in the state model. Similarly, when we read a
state out of the debugger, we store the difference between the scheduled interrupt
time and the current value of the real-time counter. Using this method, we are
able to match real-time hardware interrupt behavior for the m68hc11. Another
example relates to backtracking to states that have pending interrupts. Interrupt
flags on the m68hc11 cannot be set. They can only be cleared. As mentioned
earlier, we can modify the simulator to let us set the flags, only this does not
work when running on the native hardware. To accommodate this, we create a
state that causes the actual interrupt to fire on the next machine-instruction.
This can be accomplished by carefully setting the real-time interrupts or toggling
the external interrupt pin from the model checker through the serial or parallel
port. Using this interface, the debugger can start execution from any arbitrary
state in the program.

3.3 Environment Model

The environment model in Figure 3(a) closes the program under test by handling
nondeterminism in a systematic way, checking invariants and configuring pro-
gram dependent properties of the state. The environment model is implemented
in C++ by the user, and must be compiled into the model checker to create
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an executable that is specific to the program being verified.1 More specifically,
the environment provides a set of points to the model checker that represent
either locations where an environment response is needed or locations where a
property invariant needs to be checked. It is important to note that doing so
does not require the source code for the program under test because these loca-
tions are instruction addresses. Aside from the controls used by the debugger,
the program runs unaltered in the model checker. Each environment response
transforms the state model appropriately and returns the updated state to the
model checker. The invariant checks are predicates defined over the variables in
the state model which can include information specific to the environment.

Environment specific state information can be (and often must be) stored in
the state model. For example, modeling thread scheduling in the environment
requires environment specific state. When model checking a multi-threaded pro-
gram, it is possible to model check directly with the operating system, or it is
also possible to abstract the operating system into the environment. If the oper-
ating system is abstracted, then the environment adds data to the state model
to represent thread information. Instruction indices where we want to consider
a possible scheduling operation are listed as points of nondeterminism in the
environment model. The debugger stops at these indices, and the environment
systematically generates states which explore the effects of different schedul-
ing choices. Rather than providing a list of scheduling points, one could also use
real-time interrupts in the target processor to implement round-robin scheduling.
The interrupt handler can either implement a deterministic scheduling scheme
or allow nondeterminism as before. Finally, the environment sets program spe-
cific state model properties. These properties might include read-only memory
locations, track locations, match locations, and data abstractions.

3.4 Search Model

The final component for state enumeration is the search model that directs the
traversal of the state space. Figure 3(b) shows pseudo-code for a breadth-first
search model. The search model itself is an interface to the debugger which
facilitate other search strategies. The breadth-first search example illustrates
both the basic sequence of operations that might occur in a state enumeration
strategy, and the interactions might occur between various components of the
system. In Figure 3(b), HT is the hash-table, EM is the environment model,
and PM is the processor model. The breadth-first search does not use undo
information to backtrack. Instead, the search maintains a queue, Q, of frontier
states to be expanded. After a state is dequeued on line 4, it is sent to the
environment for possible invariants checking and nondeterministic responses. If
the environment does not have a response for the given state, then it is returned
unaltered. Each environment response is then sent to the processor model where

1 Most of the model checker options are configured at runtime on the command line
and compiled into a final executable in a manner very similar to that used in SPIN
and Mur-φ.
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Processor Model

Search Model

vgdb Interface

Environment Model

gdb
Hashtable

State Model

Algorithm: bfs(so, PM, EM)
1: init(Q, so)
2: HT = {linearize(so)}
3: while |Q| 6= 0 do
4: s = dequeue(Q)
5: for all s′ ∈ EM(s) do
6: s′ = PM(s′)
7: if linearize(s′) 6∈ HT then
8: if isViolation(s′) then
9: reportTrace(s′)

10: return false
11: HT = HT ∪ {linearize(s′)}
12: enqueue(Q, s′)
13: return true

(a) (b)

Fig. 3. The general architecture for model checking with a debugger and a search
algorithm. (a) The general architecture showing the model checker interface to the
debugger. (b) The breadth-first search algorithm using the processor model (PM),
environment model (EM) and hash-table (HT).

it is loaded into the debugger, and the debugger begins execution. When the
debugger stops, the new state is read, linearized, and sent to the hash-table for
a membership check. If the new state is not a member of the hash table, then
default properties are checked in line 8. These properties include stack overflow,
read-only violations, and any properties general to most software programs.

The remainder of the pseudo-code in Figure 3(b) proceeds by updating the
hash-table and adding the new state to the queue. The tool currently includes
implementations of depth-first and guided-search in addition to breadth-first
search.

4 Modeling Software

Model checking software requires extra care to properly handle functions, point-
ers, interrupts and external libraries. Model checking at the machine-code level
simplifies the inclusion of functions, pointers, interrupts and libraries. This is pri-
marily because the machine-code model must include all of information needed to
handle each of these unique properties of software. This is both a blessing and
a curse because the necessity of including such information further intensifies
the state explosion problem. On the other hand, software model checking at the
source-language level is somewhat more complicated because it must preserve
the illusions about variables, function calls and program flow that provided to
the programmer in a high-level language. These illusions include the notions that
variables that range over all of the naturals (or reals) and that call stacks that
can be arbitrarily deep. While reasoning about variables with infinite ranges
is often simpler than reasoning about finitely ranged models, doing so would
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destroy the accuracy of the resulting analysis. The challenge is to retain the
accuracy while approaching the efficiency of infinite domain techniques.

Function calls are simplified because the calling context of every function is
stored on the stack, which is part of the state model. There is a problem with
recursive functions in which the depth of the stack is, theoretically, unbounded.
In practice though, the stack is not unbounded and excessive recursive func-
tion calls will eventually lead to stack overflow. In some verification settings,
particularly for embedded software, determining a bound for the stack size and
detecting such stack overflows is itself a significant problem [18]. The depth
bound on function calls and recursion using a debugger is the same as it is in
hardware.

Pointers can be handled in machine-code models because the state model
is simply the contents of memory rather than a logical model of memory that
requires alias analysis. The problem with pointers, for high-level language mod-
els, is that they can reference arbitrary memory locations and this is difficult
to model with a state vector that contains variables and their values (because
the value of a pointer variable is an address of the value of interest rather than
the value itself). A symptom of this problem is that when updating one vari-
able’s value, its not clear if any other pointer variables alias the same location
and should also be updated. Working at the machine-code level eliminates this
problem because there are no variables. There are only addresses and values in
a large array. Essentially, we have the whole contents of memory in the state
vector so dereferencing a pointer and resolving aliasing issues is trivial during
model checking. The new problem is that the state vector contains all of the
memory locations and this model may become large and difficult to update.

It should be mentioned that dynamic memory allocation, using a C-command
like malloc, is also trivially modeled at the machine-code level. If the operating
system is part of the state model, then the new memory is deterministically allo-
cated according to the scheme implemented by the operating system. Otherwise,
the environment model implements a possibly nondeterministic memory alloca-
tion scheme that mimics or approximates the actual memory allocation scheme.
If the memory allocation scheme is deterministic, then pointers pointing to allo-
cated memory can be compared across model checking runs. As with symmetry
or partial order reductions, the implementation of symmetry reductions related
to dynamic memory allocation can be implemented if care is taken to extract
the appropriate information from either the environment or state model.

Interrupts allow program flow to transfer to an interrupt handler between
any two instructions for which interrupts are enabled. Modeling interrupts in
high-level language execution is somewhat awkward because an interrupt may
appear during multiple machine instructions that implement a single high-level
instruction. In addition, modeling interrupts requires an accurate model of the
interrupt timing and priority scheme of the target processor. This is impossible
to do using on the definition of a high-level language like C. At the machine-
code level, an interrupt simply looks like another function call that is governed
by the processor model rather than the program control flow. Using an accurate
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Fig. 4. A Motorolla 68hc11 processor used to validate Estes verification results for the
tSSE problem.

simulator, or even the target processor itself, provides a good model of interrupt
behavior with no additional effort.

Library function calls can, and indeed must be, be handled by either the
environment model or as part of the state model. If library functions are included
in the state model, then the environment model can be written to step over
library function calls so that the effects of the function call are computed but
the states reached in the function call are not stored or checked. Some function
calls in some situations may be of interest. In these cases, conditional breakpoints
can be set to step into function calls and include their behavior in the verification
run when needed.

5 Results

The first results use the SSE program to motivate the need to use a fine-grained
concurrency model and validate the accuracy of the model checker relative to
the actual hardware. The program in Figure 1 does not specify when interrupts
may or may not fire so we conservatively assume that they can fire between any
pair of C or machine code instructions depending on the verification step level.
As expected, if the verification is performed at the C language level, then the
alarm always correctly activated because we do not allow interrupts inside the
guard of the if statement. If the verification is performed at the machine-code
level, then the alarm is incorrectly activated.

The SSE program in Figure 2 uses real-time interrupts to correct the incorrect
activation of the alarm. Figure 4 shows a hardware implementation of the SSE
system with the carefully timed interrupts on an m68hc11 chip. The verification
is configured to step-over functions that update the LCD register. Doing so
results in a significant savings in time and space because the code to write to
the LCD is implemented using while-loops that require 216 iterations times. We
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Table 1. Results for the Motorola m68hc11 processor.

C Mixed Machine code

Program lines time states time states lines time states

Hyman 80 0.5s 387 2.2s 2005 255 5.9s 6948

Peterson 80 1.2s 655 48s 19423 4443 45s 31772

Dining Philosopher 295 0.8s 1520 NA NA 595 2.8s 7722

also instrument the SSE code to count the number and location of the interrupts,
as well as the interrupt sequence. The results from the debugger tool and the
actual hardware match exactly on all points.

The next set of results simply demonstrate some applications of the resulting
model checking. The results are from implementations of the Hyman [10] and
Peterson mutual exclusion algorithms and a classic dining philosopher algorithm.
The Hyman and dining philosopher algorithms both have errors that can be
detected at the high-language level while the Peterson algorithm is correct. The
results from a Pentium III 1.8 GHz processor with 1 GB of RAM are shown
in Table 1. The machine code is again compiled for an m68hc11 chip with the
debugger connected to a back-end simulator. We show results for C, machine
code, and mixed levels. The C level considers only interrupts at C instruction
boundaries. The mixed level steps over unimportant code, such as the LCD
output in the Petersons example, but allows interrupts at the machine-code
instruction boundaries. For the results at the C and machine-code levels, the
lines columns are the total number of lines of code from either the C language
file or the file created from an object dump of the binary executable . The time
columns contain the wall-clock time measured using the Unix time program
which includes actual start up and shutdown overhead for the model checker
and debugger. The states columns give the total number of states found using
a depth-first search when the search either finds an error or exhausts the state
space (in the case of Petersons algorithm).

In Table 1, we inserted the ideal switchings between assembly and C code
by hand. It is not always easy or feasible to construct the switching protocol by
hand. Future work will explore heuristic methods for switching between step-
levels depending on the property under test.

6 Conclusion

Model checking at the machine-code level using a debugger results in an accurate,
timed model of the software under test. As expected, allowing concurrency at
the machine-code level allows the detection of errors that are missed at the C-
instruction level and further compounds the state explosion problem. Switching
between levels of atomicity on-the-fly based on conditions evaluated at run-time
allows one to focus verification effort on (and to contain state explosion within)
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specific regions of specific execution paths in the software under test. Modeling
software at the machine-code level simplifies handling some problems unique to
software model checking such as pointers, function calls, interrupts and library
functions because all of the information needed to resolve such issues is included
in the state model. This also exacerbates the state explosion problem.

Future work on model checking machine code with a debugger focuses on
methods for containing the state explosion problem. A variety of state analysis
techniques can be applied to machine code to simplify model checking. Static
analysis of machine code is difficult because variables do not always have well
defined types and scopes. Since we have a fully executable state vector during
model checking, we can pause a model checking run to redo the parts of the initial
static analysis using the concrete information in the state vector. For example,
a dead variable analysis can be performed at every breakpoint (or some other
suitable frequency) using the contents of memory to disambiguate conditions
and function call return addresses. Such a refinement of static analysis results
would be useful in dead variable analysis and estimating the distance to an error
or assertion state. Dead variable analysis is useful in reducing the size of the
state vector and distance estimation is useful in heuristics that direct the search
to likely error states. Finally, the incorporation of symbolic techniques using
BDD or SAT algorithms using a variant of the track and match methodology
may provide a further increase in model checking capacity.
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