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Abstract: This paper presents a Live Sequence Chart (LSC) to automzais- t

formation algorithm that enables the verification of comimation protocol imple-

mentations. Using this LSC to automata transformation angonication protocol

implementation can be verified using a single verification as opposed to pre-
vious techniques that rely on a three stage verificationagmbr. The novelty and
simplicity of the transformation algorithm lies in its p&ment of accept states in
the automata generated from the LSC. We present in detakaane of the trans-

formation as well as the transformation algorithm. Furtieg present a detailed
analysis and an empirical study comparing the verificatiostegy to earlier work

to show the benefits of the improved transformation algorith

Keywords: live sequence chart, transformation, automata, veritinati

1 Introduction

Current trends in system development are shifting towareatimg and developing larger sys-
tems using several smaller communicating sub-systems fétincreasing popularity of such
modular designs comes the burden of creating, implemerdaimgtesting the implemented com-
munication protocols. Specification of communication peols has been explored significantly
in the past. English, which has been traditionally used asrtbst common language for spec-
ifying protocols, lacks the formal rigor and precisenesedeel for clarity. Viable alternatives
are formal specification languages such as UML, MessageeBequCharts (MSCs) and Live
Sequence Charts (LSCH)Yp3, DH99, BDK04]. The evolution of these graphical languages
has led to their application to modeling and specifying camivation behaviors in a variety of
different domains BHKO03, KHGO05, DKO1]. Other research has also investigated the automatic
synthesis of systems from LSCs as well as the verificationvatidation of requirements on
the LSCs themselve$iK01, AY99, SD0Y. Efficient methodologies for using these graphical
languages in a formal verification environment provide thypsrt in the development process
to completely certify, test and develop a system. Since L&€s more expressive and seman-
tically rich visual specification language compared to MSUming Diagrams and Sequence
Diagrams in UML, we focus on techniques related to LSCs. Duihé encompassing nature
of LSCs, the techniques and algorithms presented in thisrpae also applicable to the afore
mentioned specification languages.
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Previous work in KTWWO06,Klo03] presents a strategy to verify systems against LSC specifi-
cations by transforming the LSC tgoasitiveautomaton. We use the term positive automaton to
denote automaton that witness chart completions. With diséipe automaton, a system is veri-
fied against the LSC in three stages: reachability analgsiddtecting safety violations, ACTL
verification for detecting liveness errors, and finallyhiétfirst two steps fail to provide a signif-
icant result, full LTL verification is required to complegelerify the system. The authors argue
that the verification algorithms are applied in increasindgo of cost and for certain sub-classes
of LSCs not all algorithms need to be applied, which can axadlyt save on the total verifica-
tion cost. Although the approach presentedHKimt \WWO06] is sound, it has several drawbacks.
For any arbitrary LSC, the approach at a minimum has to amgaghability analysis as well as
ACTL model checking for verifying the safety and livenesep®rties of the system against the
LSC. In the worst case, LTL verification is required to contglle verify the system, which was
shown to be impractical for LSC verificatioM07]. Another drawback of the verification ap-
proach is the specialized algorithms and tools that have tordmted to perform the verification,
which limit the general applicability and acceptance of éipproach. The approach presented
in this paper only requires one verification algorithm of slagne cost as reachability analysis to
completely verify a system against any arbitrary LSC.

We present a direct and obvious transformation of the LSQniegativeautomaton by chang-
ing the placement of accept states. We use the term negatmmaton to denote automaton that
witness chart violations as opposed to chart completiorssndthis improved LSC to automa-
ton transformation a system can be formally verified agairest. SC specification by performing
only language containment on the parallel composition efdysstem automaton and the nega-
tive automaton of the LSC. Additionally, this approach doesrequire the use of customized
algorithms and tools to verify a system against a specifinatUsing our new LSC to automaton
transformation, we verify systems against larger more goeat LSCs that were previously not
verifiable with direct LSC to LTL or LSC to positive automattsansformations.

The structure of the paper is as follows. Sectiopresents a brief introduction to LSCs and
an overview of the basic LSC to automaton transformatiowrilyn as described inlo03].
Section3 discusses in detail an example of using our approach foiyirgia system against an
LSC. This example will be used for the remainder of the papewrell. Section4 discusses the
details of the transformation algorithm and presents tkerttical results to prove the correct-
ness of the transformation algorithm. Sectmpresents an analysis of the improved transfor-
mation compared to the old transformation presente&in(3]. Section6 presents a subset of
the results using the improved verification approach in sytnbolic and explicit state model
checkers. Finally, Sectiondiscusses the conclusions and future work. Proofs, detailsaddi-
tional results can be found in the long version of the papéit atp: / / vv. cs. byu. edu/ ~
rahul /| sc2aut onat a. pdf .

2 LSC Overview

We briefly introduce some constructs of the LSC granimkig. 1(a) shows an example LSC
where an idle node in a compute cluster requests and praca$sk from the scheduler’'s queue

1 See PH99,BDK *04] for details.
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with a possible implementation of tidodeand DB process in Figl(b). There are threpro-
cessesn the example LSCSchedulerNodeandDB. Each process is drawn with a rectangular
instance head and a vertical life-line originating fromresustance head. The life-line represents
the time dimension in the LSC with time progressing in the deard direction. Communication
between processes occurs mi@ssagewith the arrows representing the direction of communi-
cation. Thadle message is an example o$ynchronousnessage (filled arrowhead) where both
the sender and receiver have to be ready for the message tusbeved. The actual message
communication occurs instantaneously for the sender araiver. Theresult message is an ex-
ample of arasynchronousnessage (unfilled arrowhead) where the sender does notdblaek

for the receiver to be ready to receive the message. The sentlis written asesultl and the
receive event is written agsult?. The example LSC also contains@d non-bonded condition
(second dashed hexagon) which enforcesvtial|D predicate after goblD has been received
from the Scheduler If the condition is violated, thé&lodeprocess exits the chart. On each
life-line any point where a condition or an event occurs femed to as docation Locations
are unique to each life-line and in our research are repreddry numbers next to the instance
life-line. By default all locations arkot or mandatorylocations unless specified otherwise using
a dashed line for the life-line. The location for receivig tesult message in th&cheduler
life-line is the only cold location in the example chart. Tihehavior specified on a cold loca-
tion is not mandatory, which implies that thesult message may or may not be received by the
Scheduler Finally, behaviors described by the LSC are partitioned the pre-chart (dashed
hexagon before solid rectangle) and thain chart(rectangle after pre-chart). The pre-chart
specifies the activation condition of the LSC and the mairrtatiescribes the behavior which
must follow the pre-chart. In the example LSC, the main clsagatuniversalmain chart (solid
line), which represents behaviors that have to be obsemey &me the pre-chart is satisfied.

In addition to the constructs shown in the example LSC, séwaher constructs are also

available. The main chart can be specified asxstentialchart (drawn with a dashed rectangle)
that specifies behavior the system must satisfy at least whea the pre-chart is satisfied (as
opposed to every time the pre-chart is satisfied). Conditibrattached to another event are
bondedotherwisenon-bondedBy attaching conditions to other events, the conditiovésieated
at the exact moment the bonded event occurs, as opposed-twonded conditions where the
condition is continuously evaluated until satisfied. LS{Se allow the specification ofivariants
which are conditions spanning over multiple events in th&€€LSo-regionsspecified with a
dashed line parallel to a life-line allow events to occurrig arder. For example, if the messages
getDataanddataare specified in a co-region, either messdgea or getDatamay occur first.
It is only necessary for all events in a co-region to occumahly, conditions, messages, and
locations may be specified ast or cold. If drawn with a solid line, the construct is hot and
specifies mandatory behavior, and if drawn with a dashed thres construct specifies cold or
provisional behavior.

Our method supports all the mentioned constructs of LSCk thie following commonly
accepted restrictions. First, we adopt gect interpretation of LSCs (i.e., no duplicate message
instances are allowed within a chart). Second, the LSC dnchatts within the LSC are to
be acyclic. Third, we also do not consider overlapping LSCievative LSCs (Kleene stars)
where multiple instances of the chart may be executed samedtusly. Since most scenario
based specifications in general do not deal with the cortstitted from this research, the
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ProcessNode:
if(idle) then
Send(*‘idle ', Scheduler)

1
2:
Schedulea { Node } [ DB } 3: Receive('‘jobl D", Scheduler)

4: if(not “‘validlD")
5:
6:

i 7
8

br eak
Send(* ‘getData’'’, DB)
Receive(‘‘data’’, DB)

idle

0
= : Send(‘ ‘result’’, Schedul er)
1 9: endif

<" validiD |2 >, 10: End ProcessNode
R R getbata 11: ProcessDB:
3 0 12: while(true){
4 data 13: Recei ve(nsg, Node)
result 14: if(meg is ‘‘data’’)
I 15: Receive(‘‘data’’, Node)

16: endi f
i L M- - L1 17: RenpveDat a( data)
18: endi f
19: end while
20: End ProcessDB

() (b)

Figure 1: An example specification describing the intecaichetween a cluster nods¢dg, a
databasel¥B) and a job scheduleS¢chedule), and a possible implementation of tNedeand
DB processes (a) The example LSC containing a subset of thelemBsC grammar (b) A
system implementing thidodeandDB processes described in the LSC.

restrictions do not affect the general applicability of oesults.

2.1 Transforming Live Sequence Charts to Automata

Past research in the area of transforming LSCs to automai®primarily revolved around the
generation of positive automaton that detect chart congpiet[Klo03, HKO1, BH02, KWOL1].
Work in [Klo03] gives a detailed presentation of the algorithm to tramsfan LSC to positive
automaton. We present an overview of this algorithm folloviy a discussion of some key
aspects of the algorithm.

The LSC to automaton unwinding algorithm explores all galssinter-leavings of the events
defined in the LSC starting from the top and ending at the bottdeach life-line in the chart.
The possible event inter-leavings are explored by consigehe partial order induced by the
semantics of the LSC. The partial order of the chart dicttasthe locations in each instance
are totally ordered unless part of a co-region; thus, inmgithat each instance has to progress
linearly from top to bottom. For example, in the chart showifrig. 1(a), instanceN odecannot
move from location 1 to location 4. From location Npdehas to move to the next logical
location: location 2. To maintain the current state of th€l &e define @utas a set of locations
in the chart with exactly one location for each instance. @ieis used to record the current
state of the chart and create successor cuts. The reaclehlmbcsits from the initial cut is the
automaton for the chart. Each state of the automaton camespto a reachable cut of the chart.
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Successor cuts are generated using the set of enableditras$or a given cut. The initial cut for
all charts is created by placing each instance at its firsttiog, (0,0, 0), where the first, second
and third locations correspond to the locations forSiobedulerNodeandDB instances.

The enabled set of transitions for a cut is created using liaet semantics. For example,
a synchronous message is enabled if both the sender andereoéithe message are at their
respective send and receive locations. In our chart, theameslle is observed if th&cheduler
and Nodeinstances are each at locations 0. At the initial ¢0t0,0), the idle message is
enabled. On the other hand, since thiedeis not at location 3, thgetDatamessage is not
enabled in the initial cut, even though tB8 is at location 0. When thiglle message is explored
from the enabled set, a successor cut is generated whemecttehs for the involved instances
have been updated. In this case, the locations foNtheéeand Scheduleinstances are updated
to their next logical location giving us the successor (duf,0). At the cut(1,1,0), the joblD
message is enabled, which leads to the(2u2, 0). Asynchronous sends are enabled by default
when the corresponding instance is at the send location symtlronous receives are enabled
only if the corresponding send event has occurred and thedvieg instance is at the receive
location. Conditions act as a synchronization point wha@hearticipating instance should be
at its respective condition location for the condition todvaluated. A full description of these
semantics can be found iKlp03]. Multiple enabled transitions lead to multiple successats
from the given cut representing the concurrency in the chart

Using the chart semantics, successor cuts are generatadHeoinitial cut and each unique
cut is processed until the final cut is reached where eacanostis at the bottom of its life-line.
Each unique cut of the chart corresponds to a state in thediitaimaton. The initial cui0,0,0)
corresponds to statg in Fig. 2(a). The successor c(t, 1,0) corresponds to the statg where
theidle message has already been observed and the next messagdseled isjoblD. Cut
(2,2,0) corresponds to stat® and the final cut corresponds to stgtewhere no further events
are to be observed. Notice that transitions taken to gemetatcessor cuts correspond to the
transition labels in the automaton.

Finally, to create the positive automaton from the LSC gstaorresponding to legal exits of
the chart are marked as accept states. For example gstatd-ig. 2(a) is marked as an accept
state because it corresponds to the final cut of the LSC wigiptesents a legal completion of
the chart. Additionally, statgs is also marked as an accept state since it corresponds tatthe ¢
where the cold messagesult does not have to be received.

From the automaton in Fig2(a) we also notice that statg, where cold conditiorvalidID
occurs is non-deterministic. This non-determinism is altesf the adopted semantics of cold
conditions in Klo03]. If validID is not satisfied, the automaton can either stay in siatend
walit for the condition to be satisfied or move to the exit stgig to signify that the cold condition
was not satisfied and the chart has exited successfully.nbnigleterminism resulting from non-
bonded conditions forces the approachkibpD3, KTWWAOE] to translate the LSC automaton to
an LTL property and re-perform the verification using the larbperty, which has been shown to
be ineffective for even moderate size charts due to the $idee@esulting LTL formula KMO7].
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3 Transformation and Verification Example

We use the automaton produced by the unwinding algorithroudsed earlier as our initial
automaton. The initial automaton from the unwinding aldon is shown in Fig2(a). We
transform this positive automaton to a negative automdtan ¢an be used in our single pass
verification approach. Fig(b) and (c) show the transformed negative automaton.

Our approach transforms the LSC chart to a negative autonetpable of detecting chart
violations (as opposed to chart completions) that is niyusaited for verifying systems using
language containment. The first step in the transformatioegss is to remove all the accept
labels from the automaton. Next the exit stgtg; and any transitions leading to the exit state
are removed from the initial automaton. In our example of B{@) we remove the transition
from stateqp to stategexi, Which also removes the non-determinism from the automatizimg
from the non-bonded condition. The algorithm then intragusafety transitions (dashed edges
in Fig. 2(b)) from all states that contain a transition belonginghe main chart to the safety
stategsatety The safety state is an accept state introduced in the atdant@capture all safety
violations in the system. It has a single outgoing transitio itself predicated otrue. The
safety transitions enable the detection of safety viotetizvhich consist of duplicate messages
(messages that have been observed before) and out of ordsages in states that correspond
to main chart states. For example, in s@tef Fig. 2(b), the only legal transition is if thgoblD
message is observed. SinadID is a main chart transition, statg corresponds to a main chart
state and a safety transition is introduced. The safetgitian idle\ getDatav dataV result v
result? from stateg; to gsatetyis taken if any message excegpblD is observed.

After the introduction of safety transitions, the algonitlupdates the self-loops on each state
(dotted edges in Fi2(b)). The self-loops enable the automaton to remain in angitate until
an event forcing progress is observed. For example, in ttogreaton shown in Fig2(b), stateqy
has a self-loop;-idle A —joblD A —getDataA —datan —resultl A —result?, that is taken until the
datamessage is observed, which moves the automaton to the aéxtist The only exception
is the self-loop for the first state and the final state. The $iieqy contains a self-loop with
thetrue annotation to capture all possible future instances (arsdiple errors) of the chart in
a reactive system. The final state does not have any sel&lodbis is because the final state
represents the successful completion of the chart and tteefuerrors are possible unless a new
chart instance is observed, which is detected in the firtt.sta

Finally, the algorithm marks illegal end points of the mairad as accept states to facilitate
detection of chart violations. For example, stgtdn Fig. 2(b) is at the beginning of the main
chart where the messageblD is yet to be received. If thgoblD message is never observed,
the automaton remains in stajg indefinitely, which should be reported as an error. To report
this error, statey; is marked as an accept state. States containing no transsitirresponding
to hot constructs in the main chart are not marked as accatgisstFor example, in Fig(b),
stateqp is not marked as an accept state becausedhidID condition is a cold condition, and
its absence does not result in an error. Stgts not marked as an accept state either because it
does not contain any outgoing transitions correspondiraghiot construct in the main chart. If
theidle message is never observed, the pre-chart is not satisfiéch 8ot a violation of the
specification. Statgg is not marked as an accept state since the location akethdt? event is
cold implying that theresult? event does not have to be observed. Finally, state Fig. 2(b)
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idle

ﬁjoblb

joblD

ﬁvalidlb

—validID

true l ﬁgeIData
getData

ﬁdatC’
w)

validID

—resul

result!

ﬁresult’C
result”

tru@‘

fo idleV getDatav dataV result \/ result? f1 idleV jobID v getDatav dataV resultl \V result?
fa idleV jobID Vv dataV result \ result? f3 idleV jobID Vv getDatav result Vv result?
fa idleV joblD Vv getDatav dataV result? fs idleV jobID Vv getDatav dataV result

Po jobID A —idle A ~getData\ ~data/ —result A —result? pL validID A - jobID A —idle A ~getDatan ~dataA —resultl A —result?
P2 getDataA -idle A —joblD A ~datan —result A —result? p3 datan —idle A —joblD A —getDatan —resultt A —result?
pa resultt A —idle A —joblD A ~data/A -getDatan —result? Ps -idle A —joblD A ~getDataA ~datan —result A —result?

Figure 2: The initial and transformed automaton for the gx@rh SC shown in Figl(a). (a) the
initial automaton (b) the transformed automaton and (t)plisransition labels.

is also not marked as an accept state since it is the finalstetee the behavior as described in
the universal chart has been satisfied without errors.

Verification of the system is performed by first creating tlgstem automaton in the usual
manner. We verify the parallel composition of the systenom@uatton and the negative automaton
of the LSC by searching the behavior space of the interse&ioaccepting cycles. Any cycles
detected correspond to errors in the system. Kig) shows a possible implementation of the
NodeandDB processes in a cluster. TBeheduleprocess has not been shown in the implemen-
tation but is assumed to be correctly implemented. When ideEN odeprocess requests a job
from the scheduler (line 2). Thdodeprocess then waits to receive tf@blD and validates the
joblD using the predicatealidID (lines 3 - 5). Next, theNodeprocess requests data from the
DB (line 6), processes the data and sends the result dieduleflines 7 - 8). TheDB process
receives and processes messages as they arrive (lines 12n #tfis particular implementation,
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the DB process is erroneous because it never receives/processgpst Datamessage from the
Node Since thegetDatamessage is a synchronous message anDBprocess is never ready
to receive thegetDatamessage, thdlodeand DB processes never progress even though they
should. Verification of the parallel composition of the gystautomaton (not shown) with the
property automaton in Fig2(b) produces the wordidle, jobID,validID, (—getDatg®), with

the corresponding trace(do, 01,0, (d3)*), wherew indicates infinite repetition. Sinces is
marked as an accept state, the trace is reported as an agceytle and the violation has been
discovered. Using the positive automaton in the verificaapproach of KTWWO06] requires
two verification runs of comparable complexity to detectsbee violation.

4 Transformation and Verification Details

The transformation presented in this work is based on laggeantainment and automata the-
ory. We useSymbolic automatean extension of Buchi automata, that allows observingairay
possible set of inputs on an edge. Formally Symbolic autarag given byA = (=, Q,A, %, F)
where, 3 is the finitealphabetof input symbols (variables) is the finite set of states? € Q

is the initial stateF C Q is the set of final/accepting states, ahd Q x ¢ x Q is the transition
relation. A transitior(q, @,q’) € A represents the change from stgqte stateg’ when the formula

@ is satisfied.

We partition the set of Boolean variabl&sinto three distinct set&msgs Zipyariants and
Z conditions that contain the Boolean variables that are used for messawyariants and condi-
tions in the chart respectively. For the chart shown in E{g), > msgs= {idle, joblID, getData
data, result?, result' } andX-,ngitions= tvalidID}. The sett,5in = {jobID, validID, data,
getData result?, result } is the set of Boolean variables that are used in the main ohirt We
also have a séipqt € A which only contains transitions that correspond to hot tronss in the
chart (hot messages, hot conditions etc.).

For a set of Boolean functiorls= {@, @, ..., ¢} we define the functionlisjunctl") which
returns the disjunct of the individual formulasiinand the functiorcon junc(l") which returns
the conjunction of the individual formulas n. The functionf (X, ¢) = {o|o € X and o or
-0 appears in@} returns the set of Boolean variables frdnthat appear inp in either a
positive or negative form. For example, ¢f = idle AvalidID, f(Zmsgs¢) = {idle} and
f(zconditiorr qo) = {valid I D}.

We take as input the automaton structure for a chart in the fof a symbolic automata
structure A, with an empty final state set. Intuitively, to capture the bahaviors of a chart, we
transform the basic automaton structure to the negativaraaton that is capable of detecting
safety and liveness errors by yielding accepting cyclefénverification. We do so by adding
accept states to the automaton and adding/updating aditiars.

Fig. 3 shows an intuitive description of the outgoing transitiofs state in the transformed
automaton. The setg, Yn andy; (initialized by the algorithm in Fig4) are sets of condition,
message, and invariant letters used in the outgoing tramsiof a given state. There are three
types of transitions that are introduced/updated for egate sn the automaton. Th&afety
transition (dashed edge) leads to the safety state angisgible for detecting any safety errors.
The self-loop (dotted edgedq|r, €nables the automaton to remain in the current state umtil a
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true

Pself= ﬁdiSjunCt(stg§/_.\" R
—disjunct{Ye) A

‘bs:':lgty: disjunctZmsgs\ Ym)V
conjunciy)

—conjunci{y)

@ehild = @A ~disjuncZmsgs) f(Zmsgs @)

Figure 3: A generic state in the transformed automaton wothplete annotations for all types
of outgoing transitions 1gg . self-loop for non-progress, z‘éafety' transition to stat@safety
for detecting safety errors, and &g transitions to the successor states.

event or condition progresses the automaton to a successer $heg.p; g transitions (solid
edges) lead to the successor states. The dash-dot edgey iaduldd to the first state of the
automaton to enable verification of multiple chart instanicea reactive system.

States are marked as accept states in the automaton basea @tiéria. First, the safety state
is marked as an accept state for detecting safety violasonk as duplicate message instances
and out of order messages. Second, any state that is notl @kégaoint of the chart is marked
as an accept state. We now discuss in detail the creatioredfahsitions and the marking of
accept states.

Fig. 4 shows the algorithm for transforming the input automatoe.0My present an overview
of the algorithm in this version of the paper and refer theleedo the long version for more
details. The algorithm has a general Depth First Search YBff&cture with line 4 enumerating
the successors and line 11 making a recursive call for eamtessor. The algorithm is always
invoked for the one initial state of the input automaton tarbasformed. Lines 1 - 2 remove any
transitions to the exit statg.,i. In the automaton shown in Fig(a), the transition from state
O to the exit stataei; is removed. Lines 5 - 7 of the algorithm build the sets of \aga that
are used for messages, invariants, and conditions in thsitins from the current state to the
successor states.

Lines 8 - 10 update the transitions to the successor statBssbgemoving the transition and
adding a new transition with the updated label. The updatéd transition ensures that only the
enabled messages, invariants and conditions at a givencstatenforce progress in the automa-
ton. For example, the algorithm transforms the transitimmf stateq; to stateq, in Fig. 2(a)
from ¢ = jobID to @pjjg = JobID A —idle A ~getDataA ~datan —resultt A —result?.

Lines 12 - 15 update the self-loop for the current state tomnthat the automaton remains in
the current state if no relevant messages are observed x&woipée, in statey; of Fig. 2(b), the
self-loop—idle A —joblD A —getDataA—dataA —result? A —resultl is enabled if no message is
observed. As mentioned earlier, the first state of the autmmtzas a self-loop with thigue label
and the final state of the automaton has no self-loops. The=®as cases are not shown in the
transformation algorithm in Figl.

If the current state contains a main chart transition (labels of transitionsuiccessor states
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Algorithm: TRANSFORNL)
1: for Vo : (g, @, exit) € A do
A—A\{5}
: U’mHOYU’lH@,l,UcH(D
: for vo,q 2 (0,9.9') € Ado
Um — UmU f(Zmsgs @)
W — U f Snvariant )
Ye — YeU f(Zconditions ®)
A—A\{(q,9.9)}
Pehild — @A ~disjunciZmsgs\ f(Zmsgs @)
10: A< AU{(Q, Genjlg- 9}
11: TRANSFORNY)
12: for @: (0, ¢,q) € Ado
130 A<= A\{(g.9.0)}
14: @i — ~disjunctZmsgs A ~disjunct(ye) A conjunci(ys)
15: A — AU{(q, Pself. q}
16: if 39,4 1 (9,0,9) € Aand f (I 5, @) # O then
17! @Gsafety— disjuncZmsgs)\ Ym) V ~conjunctys)
18 A—AU{(q, Psafety Gsafety) }
19:  if (0,0,d) € Ayt then
20: F—Fuq
21: return@)

N

© 0o NGO A®

Figure 4: Algorithm for building a negated automaton fromgput LSC automaton.

are members of the main chart alphabgt,jp), then lines 16 - 18 of the algorithm add a safety
transition to the safety statgarety The safety transition enables the automaton to detectagess
order violations or duplicate messages. For the automdttowrsin Fig.2(a), statey; contains

a single transition for thgoblD message. SincblD is a member of the main chart alphabet
(jobID € £ ain) @ safety transition needs to be added. The safety tramddiostateqs, idle Vv
getDatav dataV result?V resultl, detects the presence of any message except the one allowed
messaggoblD. Because states with no main chart transitions can notteith& chart, no safety
transitions are added to them.

Lines 19 - 20 of the algorithm label the current state as aggicstate if it belongs to the main
chart and contains a hot outgoing transition. The check fanrohart transitions is performed
on line 16. To check for hot outgoing transitions, each ougadransition is checked for mem-
bership in theAp 4t set (line 19). If all outgoing transitions from a state ar&d¢the state is not
marked as an accept state. In our example, for statéhe only outgoing transition corresponds
to a cold condition and is not part of ti,; set; thus, statg is not marked as an accept state.
On the other hand statg is marked as an accept state because it has one successiiotran
that corresponds to the hot messageID.

We now state the theoretical results of the presented tvamation. We first show that for any
main chart state in the automaton at least one transitionabled for any arbitrary input (i.e.
the transition relation for main chart states is total). idgvenabled transitions guarantees that
the automaton does not ignore any inputs which could caudatizins or progress in the chart.
To conserve space, all proofs have been omitted from thsareof the paper but are available
in the long version of the paper.

Proc. GT-VMT 2008 10/ 14



@ ECEASST

Lemma 1 For all states containing outgoing main chart transitionlse transition relation is
total. Formally, given a state g with a main chart trans,iti@g/m_q:((1’(A,qi)GA qq) =true.

Lemmal is only applicable to states containing main chart trams#i Regarding states that
do not contain main chart transitions, the safety trarrsiqigafetyis not added, resulting in an
incomplete transition relation. Since these states amoresble for detecting the completion
of the pre-chart and not for detecting violations or errding, incompleteness of the transition
relation does not affect the correctness of observing teechart. Our next result states that
for all states except the first state of the automaton, thmsitian relation is deterministic. The
transformed automaton is non-deterministic only in the fitate (self-loop annotated wittue)
to accommodate for the global verification of every possildgance of the chart in the system.
Non-deterministic automata as usediTWWOG6] result in error traces that have to be validated
using full LTL verification, which has been shown to be impiead for LSCs KMO07]. Using
deterministic automata guarantees that any reportedsearerin fact valid errors in the system.

Lemma 2 For states q in the transformed automaton (except the Irstate), the transition
relation is deterministic. Formallyyq < Q,V@, ¢ : (0,9,01) € AN (0, ¢;,0)) €A, (@ANQ) =
false.

The above result guarantees that for any given input to #mstormed automaton (except the
first and last state) exactly one transition is ever enabiéglinow state our primary result for the
transformed automaton. Intuitively, we show by applicattd Lemmal and Lemma? that the
transformed automaton accepts only those words that arsenepted by the LSC and is capable
of detecting all behaviors in a system that violate the LS€ assume that the automaton created
detects all pre-chart instances correctly.

Theorem 1 The automaton, A, generated by the transformation algoriitn Fig. 4 for a given
LSC, SPEC, defined over an alphabefjpecC Z, reads exactly the complement of the language
of the SPEC. Formallyy6 = 6,6.6,...

[0€L(SPEQ = 6 ¢L(A)]A[0&L(SPEQ = 0 ¢ L(A)].

where L(A) and L(SPEQ are the languages of the transformed automaton and the SPEC.

4.1 \ferification Approach

For explicit state model checking, verification of a systegaiast the specification is performed
in the usual manner. The composition of the system and wemefd LSC automata is computed
on-the-fly and checked for accepting cycles using the DoDlelgth First Search (DDFS) algo-
rithm. If the DDFS algorithm does not discover any acceptiygles, the system implements the
safety and liveness behaviors as described in the chartsyRolbolic model checking, we first
label accept states as fair states in the composition ofyterm and transformed LSC automata.
This automaton is then verified against the ACTL propé&ty(true), which searches for fair
Strongly Connected Components (SCCs) reachable from itial istate. Any reported SCCs
are violations of the specification.
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5 Analysis

The verification approach presented KTWWO0G6] utilizes at least two and in the worst case
three algorithms to completely verify a system against a@ LSreachability analysis followed
by ACTL verification fails to produce a significant result ¢pf of correctness or a violation)
the system is verified against an LTL formula generated froenliSC specificationTwWO06g].
Compared to the verification approach BTWWO0E6], the new verification approach presented
in this paper only performs one verification run of compagatmplexity as the reachability
analysis and ACTL verification in the approach &fT\WWO06]. In the average case the total
verification cost is reduced by a factor of two and in the baseqworst case in old approach)
by a factor of three or more.

One side effect of using the negative automaton is the iiabd verify multiple instances of
a chart with cold construct violations. For example, if ir example system thid odereceives
jobID but is unable to validatgoblD, the cold conditiorvalidID is never observed and the
chart automaton will remain in statg. This is not an error since statp is a non-accepting
state waiting to observe the cold conditiealidID. If Noderestarts the job acquisition by
sending thadle message to th8chedulerthe safety transition from statp to gsatetyis taken.
Consequently, a false error will be reported (duplicatesags). Generally speaking, if in one
instance of the chart a cold construct is never observedytooef instances of the chart can be
observed in a given trace. This drawback can be limiting ighlly reactive and iterative systems
with multiple instances in a single trace. A solution is lgginvestigated as future work.

6 Results

We briefly discuss our experiments and results in this sectior a detailed presentation we
refer the reader to the long version of the paper. We creae®mavith multiple communi-
cating processes and test them against highly concurrenst wase specifications as described
in [KTWWOG]. All specifications are nameddx mwherec andmare the number of co-regions
and messages in each co-region respectively.

We first test the scalability of our approach in the symboladed checking domain and com-
pare it to the results presented KIIWWO06]. Table1 shows a subset of the results for verifying
theabpmodel using the NuSMV model checker. In general, our vetiboaapproach performs
twice as fast as the approach presentedKinWW\WO06] and we scale to specification sizes that
were unobtainable using the verification approactKin\V\WW06]. We also test the scalability of
our approach in explicit state model checking using the SRtdel checker. Tabl2 shows a
subset of the results for verifying theain andsokomodels. Our approach performs better and
scales to larger specifications when compared to the apgpredidsMO07].

7 Conclusions and Future Work

The presented LSC to automaton transformation algorithowalus to verify a system against an
LSC using only language containment with readily availdabtds. Compared to past approaches,
this approach only requires one verification run of comparabmplexity as opposed to three
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Table 1: Results for the traditional and improved verifisatapproaches using NuSMV.

Specification| Traditional Verification Improved Verification
Reachability ACTL Total
States Time (s) | States Time (s) | States Time (s) | States Time (s)
A3x5 1.01616e+06 34 1.47142e+07| 35 15730360 69 1.41696e+07| 34
A3x6 1.01616e+06 237 1.01616e+06| 239 2032320 | 477 471552 251
A3X7 879408 1568 879408 1562 1758816 | 3130 521504 1550

Table 2: Results for the improved verification approachgSRIN.

Specification| Model | Without Errors With Errors
States| Memory (MB) | Time (s) | States| Memory (MB) | Time (s)
ATX6 soko | 97500 17.216 125 89323 16.397 125
plain | 406 7.385 123 406 7.385 124
A8X6 soko | 97500 | 18.491 214 89323 17.672 210
plain | 406 8.661 216 406 8.661 215
A9X6 soko | 97500 | 20.104 325 89323 19.285 344
plain | 406 10.274 335 406 10.274 334

verification runs for any arbitrary LSC. Further, we provattthe generated automaton can
detect all safety and liveness violations in a system andirerajty show the effectiveness of
the approach. For future work we are investigating the udesais for automated environment
generation to test individual interfaces in a system. Weadse investigating the possibility of
extending the transformation algorithm to constructs sicbverlapping chart instances, Kleene
star and multiple instance detection with the presence ldf@mnstructs (as discussed earlier).
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