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Abstract

The need for a formal verification process in System on Chip (SoC) design and Intellectual Property (IP)
integration has been recognized and investigated significantly in the past. A major drawback is the lack of a
suitable specification language against which definitive and efficient verification of inter-core communication
can be performed to prove compliance of an IP block against the protocol specification. Previous research has
yielded positive results of verifying systems against the graphical language of Live Sequence Charts (LSCs)
but has identified key limitations of the process that arise from the lack of support for important constructs
of LSCs such as Kleene stars, subcharts, and hierarchical charts. In this paper we further investigate the
use of LSCs as a specification language and show how it can be formally translated to automata suitable
for input to a model checker for automatic verification of the system under test. We present the translation
for subcharts, Kleene stars, and hierarchical charts that are essential for protocol specification and have not
been translated to automata before. Further, we successfully translate the BVCI protocol (point to point
communication protocol) specification from LSC to an automaton and present a case study of verifying
models using the resulting automaton.

1 Introduction

System on Chip (SoC) designs are fast moving towards a development environment

that incorporates third party Intellectual Property (IP) cores and blocks. Due to

the use of such heterogeneous IP cores, multiple communication protocols are re-

quired to achieve the desired interactions, behavior and functionality. With this

diverse development environment comes the burden of verifying the system un-

der development as well as the externally developed system being incorporated to

ensure correctness and compliance to the specification. This need is especially im-

portant for vendors looking to market and promote their products in new markets

and development environments. To reduce the verification costs and redundancy

of verification (verified twice: once by the IP core developer and once again by the

integrator), IP cores are often verified against commonly accepted standards and

specifications to provide compliance results that can be easily utilized in an inte-

gration environment. A significant issue that hinders the process is the lack of an
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accepted specification language that can be formally integrated into the verification

environment.

Traditionally, English has been used as the specification language for describing

communication protocols. Due to the ambiguous and informal nature of English, in

our experience, it has proven to be an inefficient specification language for use in a

formal verification environment. Other specification languages based on temporal

logic have also been used to specify correctness requirements of systems. Due to

the complex nature of the temporal logics and the lack of support in all verification

tools, these specifications tend to be limited in their use and applicability. Although

specification patterns developed in the past do help, some aspects of creating a

complete specification for an arbitrary verification are always unique and have to

be created ground up; thus, re-enforcing the difficulty of using temporal logics as a

specification language.

Other research has also investigated the use of graphical languages such as Live

Sequence Charts (LSCs) for specifying communication protocols and have reported

positive and encouraging results [5]. We choose LSCs as our specification language

because of their direct applicability to specifying communication protocols that

primarily describe inter-process communication. Additionally, their graphical and

intuitive nature makes them extremely usable for everyone involved in the develop-

ment process and not only experts of formal verification.

In the past, LSCs have been used both as a specification and a modeling lan-

guage. Because of their inherent ability to specify communication patterns without

data information, we choose to use LSCs as a specification language describing the

correctness requirements of a system. Previous work in the area of using LSCs as

a specification language in a formal verification environment has been effective in

exploring a verification approach but has failed to provide a comprehensive solution

that supports the entire LSC grammar, which includes constructs such as Kleene

stars, subcharts and hierarchical charts. We show how a communication protocol

implementation can be formally verified against an LSC specification by providing

translations of the entire LSC grammar to an automaton that is similar in nature

to a never claim generated by SPIN [8]. This automaton can then be used directly

as input to a model checker for verification of the system under test. Further, we

provide a case analysis where the entire Basic Virtual Component Interface (BVCI)

protocol is translated to an automaton and Promela models are verified against the

translated automaton [5].

Using a graphical specification language targeted towards communication pro-

tocols provides the inherent advantage of rapid development of specifications that

are intuitive and useful throughout the development cycle of the product. Since

LSCs can be used both as a modeling and a specification language, they provide a

common medium for verifying requirements as well as systems. Using the transla-

tion to automaton as presented in this paper, the specification can now be applied

more directly in a formal verification approach. Additionally, this approach does

not require specialized tools and algorithms to be applied for formal verification

of a system. It relies only on the synchronous composition of the model with the

specification for detection of accepting cycles using the Double Depth First Search

(DDFS) algorithm or a simple ACTL formula (for labeling algorithms) [12]. Doing
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so, allows the technique to retain the advantage of any custom model abstractions

or state space reduction techniques supplied by the model checker.

The paper is organized as follows. Section 2 presents an overview of related

work in the field of LSCs and verification using LSCs. Section 3 gives an overview

of the LSC constructs and provides an example of an LSC that is explained in detail.

Section 4 presents an overview and examples of the LSC to automaton translation

method. Section 5 discusses the case study and presents results of verifying Promela

models against the BVCI LSC specification followed by conclusions in Section 6.

2 Related Work

LSCs are an extension to Message Sequence Charts (MSCs) [9]. The most signif-

icant addition to the MSC language is the introduction of liveness or provisional

behavior that distinguishes between mandatory and optional behavior [4]. Addi-

tionally, the LSC language also provides constructs such as temperatures, subcharts,

and precharts that enable the user to describe behaviors that could not have been

described in MSCs. Protocol Live Sequence Charts (PLSCs) are an extension to

LSCs that are targeted to describing protocols [5].

LSCs have been used to model and specify a variety of systems such as air traffic

control systems [3], radio based communication systems [6], and train systems [2].

Their use in these case studies has shown their effectiveness in specifying and ver-

ifying complex behaviors of a system. LSCs and PLSCs have also been used in

the past to specify SoC communication protocols and formally verify aspects of the

protocol on the system [5]. Additionally, they have also been used for automatic

synthesis of systems as well [7].

Recently, LSC based verification techniques have been gaining significant atten-

tion. One aspect of LSC related verification deals with verifying properties on the

LSC specification itself [1,16]. In this case, the LSC is used as the model.

Another aspect of LSC based verification deals with the verification of systems

against the LSC specifications. Two primary methods have been proposed to per-

form verification of systems against LSCs. The first deals with temporal logic. One

approach converts the LSC specification to multiple small temporal logic properties

that are verified on the system [5]. These individual properties are easily verified on

a system but are insufficient to establish a formal relationship between the specifi-

cation and implementation itself. Other approaches translate the complete chart to

temporal logic, which is then used as the specification input to a model checker such

as SPIN or NuSMV [13,11]. The primary limitation of these approaches is the expo-

nential explosion encountered in the generated temporal logic formula (number of

nested temporal operators), which severely reduces the scalability of the approach.

Additionally, the lack of support for translating the complete grammar of LSCs to

temporal logic is a great limiting factor in the applicability of the approaches.

The second method for verifying systems against LSCs does so by converting

the LSC to an automaton and using the automaton in language containment based

verification techniques [12]. This method supports a greater subset of the LSC

grammar and scales to much larger specification sizes. Although the verification re-

sults and performance using the automaton approach for verifying systems are very
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Fig. 1. Example LSC showing the Normal Request scenario.

promising, the research does not deal with constructs such as subcharts, hierarchi-

cal charts, and Kleene stars, which are essential to the specification and verification

of SoC interface and communication protocols. The work presented in this paper

innovates upon previous work by extending the translation of LSCs to the complete

grammar of LSCs.

3 Live Sequence Charts

The LSC language provides constructs to express behavior of systems and individual

processes with relative ease and intuitiveness. The primary advantage lies in its

graphical yet formal nature. Fig. 1 shows an example LSC for the Normal Request

subchart in the BVCI protocol [5]. We use this example as our basis for introducing

the constructs and semantics of the LSC language.

Processes or Instances: Processes are drawn with rectangular instance heads

that denote the start of the processes. A vertical line originating from the instance

head signifies the life-line of the process and ends in a filled rectangle, which termi-

nates the respective process. The example LSC describes the interaction between

the Initiator and Target processes.

Locations: The life-line of each process is marked with locations that are points

where events and other constructs may be described. Locations are unique to each

process and start at location L1. For each new event or construct placed on the

process life-line, the location number is incremented for the respective process. For

example, the address message is sent from the Initiator process at L3 and Target

evaluates the cmdack == 0 post condition at L17.
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Messages: Messages are a form of communication between processes in the

LSC. Each message has a sender and receiver process attached to it. Messages

are annotated with a message label that identifies the message. Messages can be

simultaneous or asynchronous. Simultaneous messages are drawn with a solid arrow

head and occur instantaneously when both the sender and receiver are ready for

the communication. Asynchronous messages are drawn with an open arrow head

and can be received any time after sending (we force the send event to occur before

the receive event). In the example LSC, the address message is an asynchronous

message and the cmdackHigh message is a synchronous message.

Conditions: Conditions are placed in the chart by drawing hexagons around

the life-lines of processes evaluating the condition. The condition label describes a

predicate that must be satisfied at the current location(s) of the process(es). Condi-

tions spanning multiple process life-lines act as synchronizing points for the involved

processes and the condition is not evaluated unless all the processes are at the re-

spective condition locations. Conditions attached to a message are called bonded

conditions. Conditions placed on their own location and not attached to a message

in the chart are called non-bonded conditions [10]. Non-bonded conditions are eval-

uated continuously until they are satisfied. In our example LSC, all conditions (the

cmdack == 0 precondition and the cmdack == 0 postcondition) are non-bonded.

Invariants are conditions spanning over multiple locations in the chart.

Coregions: Coregions are drawn with a dashed vertical line next to the life-line

of a process. They describe behavior that can occur in any order. All messages in

the dashed vertical line (address, be, clen, etc.) next to the Initiator and Target

processes are in a coregion.

Simultaneous regions: Simultaneous regions describe events that occur at the

exact same time. Dots are drawn on locations to indicate simultaneity of events.

Actions: The LSC language also provides the action construct that allows a

process to perform an action on its local or global variables. For example, variables

may be incremented, decremented or assigned a value at certain points on the life-

line of a process. In the example LSC of Fig. 1, the count + + action is performed

by the Target process before the postcondition is evaluated. Currently, actions do

not translate to a state in the automaton generated from the LSC specification.

Although, it is possible to check the effect of an action by automatically generating

a condition in the LSC to ensure that the action has been performed successfully.

Prechart: The prechart is drawn with a dashed hexagon encompassing the

instance heads and connects to the main body of the chart that is described in the

solid rectangle following the prechart. The prechart describes the behavior of the

system under which the main body of the chart is to be observed. The prechart can

also be substituted with a single activation condition.

Main chart: The main chart of the LSC specifies the behaviors described in

the rectangle following the prechart. The main chart can be either existential or

universal. Universal charts, drawn with a solid rectangle, specify behavior that must

be satisfied by the system every time the prechart is satisfied. Existential charts are

drawn with a dashed rectangle and specify behavior that the system must exhibit

at least once when the prechart is satisfied. In the example LSC of Fig. 1, the main

chart is a universal chart.
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Subcharts: Subcharts are LSC charts that can be included within the body of

a larger main chart. They are usually not preceded by a prechart. When a subchart

B is included within the main chart of A, chart A is at a higher scope than subchart

B. Subcharts in conjunction with conditions and Kleene stars can be used to create

control and looping structures such as if-then and while blocks. The example chart

shown in Fig. 6(a) shows one main chart that contains a subchart as well. The

semantics of subcharts are discussed in greater detail in Section 4.2.

Temperatures: Temperatures in LSCs can be assigned to messages, condi-

tions, and locations. A hot temperature is depicted by using a solid line to draw

the construct and specifies behavior that must be satisfied by the system. A cold

temperature is drawn using a dashed line for the construct and specifies behavior

that may be satisfied. If a cold message is never observed, the LSC waits at the

current location for the message. If on the other hand, the construct after the cold

message in the chart is observed, the LSC progresses to the location after the cold

message. Bonded cold conditions do not affect the LSC execution. If the condition

is not satisfied, an error is not reported and the LSC exits the current scope to a

higher scope. If no higher scope exists, the LSC exits completely. In the case of a

non-bonded cold condition, the LSC waits indefinitely at the current location for

the condition to be satisfied and can only exit the current scope if a construct at a

higher scope is observed. It is not possible for the LSC to move to a location after

the non-bonded cold condition within the same chart until the non-bonded cold

condition is satisfied. If no higher scope exists, the LSC waits indefinitely for the

non-bonded cold condition to be satisfied. For the example chart shown in Fig. 6(a),

if the non-bonded cold condition p is not satisfied, then the LSC waits at the current

location until either p is satisfied or a b is observed. All constructs in the example

LSC in Fig. 1 are hot except for the activation condition cmdack == 0.

Kleene star: The Kleene star construct, ’∗’, is used to represent multiplicity

where the associated chart/message can occur zero or more times (finite). In our

example LSC, the clock signal following the cmdack == 0 condition can occur as

many times as required before the coregion messages are observed. A variation of

the Kleene star is the ’+’ symbol that forces at least one (and allows more than

one) occurrence of the associated construct.

Hierarchical charts: Hierarchical charts are constructed using individual LSCs

and are useful for creating specifications that require control flow. Hierarchical LSCs

are similar to LSC subcharts and high level MSCs as described in [14]. Fig. 7(a)

shows an example of hierarchical LSCs where A, B, and C are individual LSCs

joined together to form a hierarchical LSC.

We have presented the entire set of LSC constructs that are currently supported

by our LSC to automaton translation. Apart from the listed constructs, the chart

also induces a natural partial order for all constructs along each instance line. In-

tuitively, instances evolve in the downward direction and are blocked until an event

on their life-line occurs. For the example chart shown in Fig. 1, the chart is entered

when the cmdack == 0 condition is satisfied. After the precondition is satisfied,

multiple clock signals may occur before the cmdvalHighmessage should be observed

followed by the coregion. After all constructs as described in the LSC are observed,

the Target process increments the count variable and waits for the cmdack == 0
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condition to be satisfied.

Additionally, we incorporate the delayed choice semantics when dealing with

subcharts, hierarchical charts, and cold constructs. The delayed choice semantics

allow the chart to resolve a choice by waiting for relevant input before commit-

ting to a certain path in the LSC. Since we are using the chart as a specification

language rather than a modeling language, delayed choice semantics help avoid

non-determinism (reduce false positives). If the LSC were to be used as a model

rather than a specification, delayed choice semantics would be removed to allow

non-determinism in the model.

In our research, we deal with all the described constructs of LSCs with the fol-

lowing restrictions: (a) overlapping instances of charts are not permitted, (b) the

prechart and the main chart should have a disjoint set of messages and conditions

(to avoid overlapping instances of charts), and (c) only one subchart can be enabled

at a given time. These limitations have been introduced to simplify the LSC to

automaton translation process and remove any non-determinism. Since most speci-

fications in general do not require overlapping charts and instances, the limitations

do not affect the applicability of the results.

4 LSC to Automaton Translation

Our verification approach using LSCs is based on detecting accepting cycles on the

synchronous composition of the system automaton and the negative automaton of

the LSC. The negative automaton of the LSC is the automaton that enables de-

tection of unwanted behaviors in the system (using accept cycles recognized by the

LSC automaton). The automaton is similar in nature to the never claim used in

SPIN and has been shown to be an effective method of using LSCs for verifica-

tion [12]. We first present an overview of the LSC to automaton translation for

basic constructs as discussed in [12] and then present the translation for extended

constructs that have not been explored in previous work: the Kleene star operator,

subcharts, and hierarchical charts. To conserve space, we restrict our discussion to

universal main charts only.

Before we discuss the LSC to automaton translation, we introduce some neces-

sary formalism. We use Symbolic automata, an extension of Büchi automata, that

allow observing any of a possible set of inputs on an edge. Formally, Symbolic

automata are given by A = 〈Σ, Q,∆, q0, F 〉 where, Σ is the finite alphabet of input

symbols (variables), Q is the finite set of states, q0 ∈ Q is the initial state, F ⊆ Q

is the set of final/accepting states, and ∆ ⊆ Q × ρ × Q is the transition relation.

A transition (q, ρ, q′) ∈ ∆ represents the change from state q to state q′ when the

formula ρ is satisfied.

We partition the set of Boolean variables Σ into three distinct sets Σmsgs,

Σinvariants, and Σconditions, that contain the Boolean variables that are used for mes-

sages, invariants and conditions in the chart respectively. For the chart shown

in Fig. 1, Σmsgs = {address, opcode, clen, . . .} and Σconditions = {cmdack == 0}.

The set Σmain = {address, opcode, clen, . . .} is the set of Boolean variables that are

used in the main chart only. We also have a set ∆hot ⊆ ∆ which only contains tran-

sitions that correspond to hot constructs in the chart (hot messages, hot conditions
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∨¬conjunct(ψi)

φchild = φ ∧ ¬disjunct(Σmsgs \ f(Σmsgs, φ))

true

φsafety = disjunct(Σmsgs \ ψm)

φself = ¬disjunct(Σmsgs)∧
¬disjunct(ψc)∧
conjunct(ψi)

Fig. 2. Generic state of the LSC to automaton translation.

etc.).

For a set of Boolean formulas Γ = {ρ0, ρ1, ..., ρn} we define the function disjunct(Γ)

to return the disjunction of the individual formulas in Γ and the function conjunct(Γ)

to return the conjunction of the individual formulas in Γ. The function f(Σ, ρ) =

{σ|σ ∈ Σ and σ or ¬σ appears in ρ} returns the set of Boolean variables from Σ

that appear in φ in either a positive or negative form. For example, if ρ = a∧b, and

b is a condition predicate, f(Σmsgs, ρ) = {a} and f(Σcondition, ρ) = {b}. Addition-

ally, the ψm, ψc and ψi sets contain the message, condition and invariant predicates

appearing in the current state of the automaton (predicates in the current cut).

The automaton of the chart is obtained by exploring every possible cut through

the chart. A cut through a chart represents the current state of the chart as specified

by the location of each process in the chart and the state of the variables of the

chart. For the example LSC shown in Fig. 1, the X marks on each instance line

represent a cut through the chart. At this cut the Initiator and Target processes

are at the beginning of their coregion ready to send/receive any of the messages in

the coregion.

From a given cut, enabled transitions lead to successor cuts. The enabled tran-

sitions correspond to the set of events that can occur from a given cut without

violating the partial order induced on the events by the instances in the chart.

Each unique cut of the LSC corresponds to a unique state in the automaton. The

unwinding algorithm as presented in [10] provides a method to unroll the LSC and

all possible cuts of the LSC; thus, it gives the basic structure of the LSC automaton.

This basic structure of the automaton is then transformed to a negative automaton

using the transformation algorithm presented in [12]. It should be noted that the

unwinding algorithm presented in [10] does not support Kleene stars, subcharts,

and hierarchical charts. Additionally, the basic structure generated from the LSC

is not as efficient as the transformed automaton presented in [12].

The general structure of the LSC automaton can be split into two parts: the

prechart automaton and the main chart automaton. Additionally, a special state

in the automaton is the safety state, qs: an accepting state that contains only one

outgoing transition to itself labeled with true. The prechart automaton contains

only non-accepting states since the prechart is responsible for the detection of the

activation condition of the main chart. Additionally, the prechart states do not

contain transitions to the safety state since the prechart does not detect errors

or incorrect behavior. The first state of the prechart contains a special outgoing

transition to itself that is labeled true to ensure that all possible instances of the

charts in the system are checked for errors (corresponds to globally).
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Fig. 2 shows a generic state of the automaton with all possible outgoing transi-

tions. The dotted self-loop in each state is to detect non-progress when no relevant

letters are observed (liveness errors). The solid transitions to child states detect

the progress through the LSC when relevant letters are observed. Multiple child

states occur when concurrency is present in the chart. The dashed transition from

main chart states to the safety state allows detection of safety errors (out of order

messages, invariants, etc.). Main chart states are marked accept states if at least

one progress transition corresponds to a hot construct from the main chart. The

final state of the automaton is non-accepting and contains no outgoing transitions.

Using the transition labels as shown in the generic state of Fig. 2, the transition

relation for each main chart state is proven to be deterministic and total, which is

further utilized in the proof of correctness for the translation.

4.1 Kleene Star

Kleene stars can be placed on messages or subcharts to indicate repetition. When

a Kleene star is placed on a construct (message or subchart), the construct may

be observed in the system zero or more times (finite). We first show how Kleene

stars attached to messages are translated to automaton and discuss the translation

of subcharts with Kleene stars in Section 4.2.

Fig. 3(a) shows an LSC where message b may occur zero or more times. The

corresponding automaton is shown in Fig. 3(b). The first state, q0, corresponds to

the locations in the LSC where message a is yet to occur. The safety transition

is enabled if any out of order messages (b ∨ c) are observed. The second state q1
corresponds to the state where the message b can occur repeatedly (finite number

of occurrences). To accommodate for this repetition, a new disjunctive clause b ∧

¬a∧¬c is added to the self-loop (expressions reduce to ¬a∧¬c). The modification

allows the automaton to remain in state q1 as long as no relevant messages or the

message b is observed repeatedly. The safety transition is also modified to allow

multiple occurrences of b. Finally, if c is observed, the automaton moves to state q2,

which is the end of the LSC and the automaton. It should be noted that currently

we do not handle the b∗b case.

A variation of the Kleene star construct is the ’+’ operator that is used to

specify that a message should appear at least once. If message b in Fig. 3(a) is

changed to have a ’+’ rather than a ’∗’ operator, the corresponding automaton is

shown in Fig. 4. The major difference between the Kleene star and ’+’ operator

translation lies in the introduction of an extra state (q1) to ensure at least one

instance of the message b is observed. The state q1 waits for the first b to be

observed and the state q2 allows an infinite number of b’s to be observed. The

extra state is introduced by the LSC unwinding algorithm and the transition labels

as described earlier are implemented for each state; thus, making the transition

relation total and deterministic and allowing us to apply the correctness proof.

We now formalize our translation of Kleene stars to automaton. The transition

labels as shown in Fig. 2 are modified to incorporate translation of the Kleene star.

We introduce the sets ψk and ψx corresponding to the messages that are attached

with a Kleene star and messages not attached with a Kleene star for a given state.

The self-loop is modified to allow the automaton to remain in the current state
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¬a ∧ ¬c∨

¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c

c ∧ ¬a ∧ ¬b

qs

b ∨ c

true

a ∨ (¬a ∧ c)

q1

q0

q2

(a) (b)

Fig. 3. Example of translating a message with Kleene star.

if no relevant messages are observed, or if the Kleene star messages are observed:

φself = ¬disjunct(Σmsgs \ψk)∧¬disjunct(ψc)∧ conjunct(ψi). Secondly, the safety

transition is modified to disable detection of multiple instances of a message and

detect all other possible safety errors as follows: φsafety = disjunct(Σmsgs \ (ψk ∪

ψx))∨conjunct({¬disjunct(Σmsgs\(ψk∪ψx)), ψx}). Using these modified transition

labels, we can now prove that the transition relation for each main chart state is

deterministic and total.

Lemma 4.1 For all states containing outgoing main chart transitions, the tran-

sition relation is deterministic and total. Formally, given a state q with a main

chart transition:
(

∨

∀φi,qi:(q,φi,qi)∈∆ φi

)

= true, and ∀q ∈ Q,∀φi, φj : (q, φi, qi) ∈

∆ ∧ (q, φj , qj) ∈ ∆, (φi ∧ φj) = false.

By proving that the transition relation for each main chart state is total and

deterministic, we can now show that all safety and liveness errors are detected by

the generated automaton. To conserve space, proof details are omitted from this

version of the paper.

Theorem 4.2 The automaton, A, generated for a given LSC, SPEC, defined over

an alphabet ΣSPEC ⊆ Σ, reads exactly the complement of the language of the

SPEC. Formally, ∀θ = θ0θ1θ2 . . .

[θ ∈ L(SPEC) =⇒ θ 6∈ L(A)] ∧ [θ 6∈ L(SPEC) =⇒ θ ∈ L(A)].

where L(A) and L(SPEC) are the languages of the automaton and the SPEC.

4.2 Subcharts

We now focus on translating subcharts to automaton. Fig. 5(a) shows an example of

an LSC with three subcharts that start with the letters x, y, and z respectively. To

conserve space we do not show the entire contents of the subcharts, but focus on the

start letter of each subchart. Given the example LSC of Fig. 5(a), the corresponding

automaton translation is presented in Fig. 5(b).

To translate a chart that contains subcharts, each subchart is first individually

translated to an automaton. After each subchart has been translated to its respec-
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a ∨ (¬a ∧ c)

q0

a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ ¬c

¬a ∧ ¬b ∧ ¬c q1

¬a ∧ ¬b ∧ ¬c∨

c ∧ ¬a ∧ ¬b

q3

q2

a ∨ c

b ∧ ¬a ∧ ¬c qs

b ∨ c

¬a ∧ b ∧ ¬c

true

Fig. 4. Translation of the plus operator on a message.

x

A1 A2

A

C

B∗

z

y

q0true

x

y

z

y

z

z

y
A

B

C

y

z

(a) (b)

Fig. 5. Example of translating an LSC with multiple subcharts.

tive automaton, the automata are combined into one large automaton using the

scheme presented in Fig. 5(b). The automaton for the LSC moves from the initial

state q0 to the automaton of chart A when an x is observed (automata combined

using standard sequential composition) [15]. After subchart A has been observed

successfully, the automaton moves to subchart B and so on.

The dashed transitions in the automaton are introduced to incorporate delayed

choice semantics. Such dashed transitions are introduced from every possible legal

exit (last state and states corresponding to cold constructs) of a subchart to the

entry points of other subcharts or higher scopes. For example, if at a legal exit

of subchart A, the letter y is observed, progress is made by exiting chart A and

entering chart B. Similarly, from a legal exit of chart A, progress can be made to

the beginning of chart C by observing a z. The dash-dot transitions from the legal

exits of B to the beginning of B are introduced to incorporate delayed choice for

the Kleene star attached to subchart B. They ensure that a new instance of B can

be observed from an legal exit of B.

Fig. 6(a) shows a subchart with an attached Kleene star. The corresponding

automaton (without safety transitions) is shown in Fig. 6(b). At state q0 the au-

tomaton expects to see the message a. Once a has been observed, the automaton

moves to state q1 where it either expects to enter the subchart (waiting for condi-

tion p to be satisfied) or to move to the location after the subchart when message b

is observed (using the dashed transition from q1 to q4). If the subchart is entered,



Kumar and Mercer

A1 A2

*

x

y

a

b

p

¬p ∧ ¬a ∧ b ∧ ¬x ∧ ¬y

q0

q5q4¬y ∧ ¬a ∧ ¬b ∧ ¬x

q3

q2

q1

p ∧ ¬a ∧ ¬b ∧ ¬x ∧ ¬y

¬p ∧ ¬a ∧ ¬b ∧ ¬x ∧ ¬y

¬y ∧ ¬a ∧ ¬b ∧ ¬x

x ∧ ¬a ∧ ¬b ∧ ¬y

¬y ∧ ¬a ∧ ¬b ∧ ¬x

¬y ∧ ¬a ∧ ¬b ∧ ¬x

y ∧ ¬x ∧ ¬a ∧ ¬b

y ∧ ¬x ∧ ¬a ∧ ¬b

a ∧ ¬b ∧ ¬x ∧ ¬y

b ∧ ¬a ∧ ¬x ∧ ¬y

(a) (b)

Fig. 6. Example of translating subcharts with attached Kleene star.

message x is observed in the normal manner. At state q3, message y is observed and

the outgoing transition depends on the Kleene star. As a Kleene star is attached to

the subchart, observing message y leads the automaton back to state q1 using the

dotted transition. If the Kleene star did not exist, the automaton would move to

state q4 after observing y. After y has been observed, the automaton waits for b.

To facilitate the translation of subcharts from LSC to automaton, the unwinding

algorithm is modified to keep track of the start and end states of each subchart

automaton as well as all the legal exits of a subchart. The unwinding algorithm

then performs sequential composition of the individual subchart automaton with

the main chart using the start and end states of each subchart automaton to create

the skeleton automaton for the entire main chart. Once the skeleton automaton

for the main chart has been created, for each legal exit of a subchart (recorded by

unwinding algorithm), extra child transitions are added to possible future states and

the self loop and safety transition labels are modified to ensure that the transition

relation remains deterministic and total. Since each transition from a legal exit

of a subchart state to a possible future state is considered a child transition, the

transition labels shown in Fig. 2 require no change, rather, the creation of the

individual sets ψk, ψm, and ψx is modified to include the letters that can lead to

higher scope executions. Using the deterministic and total transition relation for

each main chart state we can again apply the proof of correctness of Theorem 4.2.

To conserve space, the details have been omitted from this version of the paper.

Subcharts that occur concurrently with other constructs in the chart are first

combined using standard parallel composition of automata (all possible inter-leavings

are explicitly expressed) and then combined with the rest of the main chart automa-

ton. For example, if subcharts A and B are concurrent with each other, the au-

tomata for the subcharts are composed in parallel and the last state of the automa-

ton is used for performing sequential composition with the automaton of subchart

C. Performing the parallel composition is exponential in the worst case.
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A
x

y

y ∧ . . . z ∧ . . .

A

B C

(a) (b)

Fig. 7. Translating hierarchical charts to automaton.

4.3 Hierarchical Charts

Hierarchical charts allow individual LSCs to be joined together sequentially. The

construct is particularly useful in combining large individual LSCs into a visually

concise LSC incorporating control flow and choice. Fig. 7(a) shows an example of a

hierarchical chart. A, B, and C are individual charts and either chart B or C can

be executed after chart A has completed execution. After chart C has completed

execution, the hierarchical LSC moves back to chart A. Message x is the final

message of chart A and messages y and z are the first messages of charts B and C

respectively (activation). The corresponding automaton of the hierarchical chart is

shown in Fig. 7(b). To conserve space, we only show the general structure of the

automaton and the hierarchical chart.

From the last state of chart A, the automaton has the option of moving to the

first state of chart B or the first state of C. If a y is observed, the automaton moves

to the automaton of chart B and if a z is observed it moves to the automaton of C.

The final state of chart A is not accepting, since no behavior must be observed at

this point. The automata are joined together using standard sequential composition.

Since chart C always moves back to chart A, a dash-dot transition is introduced

from the last state of chart C’s automaton to move back to the first state of chart

A. Additionally, the dashed transitions from A to B and A to C are introduced

to handle cold constructs. A similar set of transitions is introduced from C to A

for cold constructs in C. These transitions can only be introduced to the successor

charts of a given chart. For example, such transitions are not introduced from chart

B to chart A or C since B has no successors. In the presence of multiple messages

at the end of a chart, the translation is always guaranteed to have a final state,

which is used as the starting point for joining successor charts.

It should be noted that in accordance with delayed choice semantics the minimal

common prefix is chosen to identify the next chart that is to be executed (one

message in the example, but could be more than one when complex precharts are

specified). In the case of complex precharts (more than one message/condition),

each legal exit of a chart leads to a new instance of prechart detection where it

is possible to detect progress in the prechart of a successor chart or in the current

chart itself (by observing the cold construct). For multiple successor charts, multiple

prechart detections are introduced from each legal exit of a chart.

5 Case Study: BVCI Protocol Verification

The Basic Virtual Component Interface (BVCI) protocol is part of the Virtual

Component Interface (VCI) standards family that was developed to specify point
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Model States Memory (MB) Time(s)

default-ack-request 1.10e+06 82.19 14.5

normal-request 1.1e+06 82.29 14.7

default-response 1568 2.62 0.77

normal-response 1574 2.62 0.90

Table 1
Verification results for Promela models against the BVCI protocol LSC specification.

to point communication protocols. We use the BVCI protocol as our specification

for case analysis because of the complex nature of the specification as well as the past

research that has been performed on verifying systems against the BVCI protocol [5].

We now describe our modeling and verification approach, and present results of

verifying our models against the LSC specification.

Specification: The specification consists of one LSC that contains four sub-

charts, each with a unique activation condition. Fig. 1 shows the first subchart in

the LSC specification. The remaining subcharts are not included in the paper to

conserve space. Each subchart contains Kleene stars and plus operators that are

translated using the schemes presented in Section 4. Each individual subchart is

translated and combined into one large automaton using the subchart translation

scheme presented in Fig. 5. The total size of the resulting automaton is 291 states

and it describes all possible behaviors of the Target and Initiator processes.

Modeling: Four different models that implement the behaviors of the BVCI

model as described in the individual subcharts of the BVCI specification are created

in Promela. Due to the inherent limitations of using Promela as the modeling

language, the clock signal is abstracted and replaced with a synchronous message

that is exchanged between the Initiator and Target processes.

Verification: To verify the models against the specification, each model is

combined with the automaton translated from the BVCI LSC specification using

SPIN. A synchronous composition of the two is then checked for accepting cycles

using the built in Double Depth First Search (DDFS) algorithm of SPIN. Results

are shown in Table 1. For each model, we list the number of states that were

explored to completely verify the model against the entire BVCI specification along

with the memory and time resources that were utilized. The results presented here

are for models that did not contain any errors. In a separate verification exercise,

safety and liveness errors were introduced in the models and verified against the

specification. Each error introduced in the model was successfully discovered by

the model checker. Since past techniques for LSC verification do not incorporate

Kleene star and subchart translations, a comparison is not possible.

6 Conclusions

We have shown how additional constructs of LSCs such as subcharts, Kleene stars,

and hierarchical charts can be translated to a negative automaton. We have also

presented a case study of using our translation technique to create an automaton

from the BVCI protocol and perform verification of Promela models against the
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resulting specification, which has not been done before. Our results and experiences

indicate that using the LSC language as a specification language is extremely useful

for writing and developing specifications that can be used during formal verification.

Additionally, their use as a modeling language further strengthens their applicability

in the initial stages of the protocol development process.

For future work in this area we are developing a technique that allows us to

create individual negative automata for each process/instance described in the LSC

to perform modular verification of a system and reduce the verification state space.

We are also working towards incorporating the current approach in a tool chain for

protocol development/verification.
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