
AVoCS 2006

Improving Translation of Live Sequence
Charts to Temporal Logic

Rahul Kumar1 Eric G Mercer2

Computer Science Department, Brigham Young University, Provo, Utah 84606, USA

Annette Bunker3,4

Intel Corporation, Portland, Oregon 97123, USA

Abstract

An efficient and mathematically rigorous translation from Live Sequence Charts (LSCs) to temporal logic
is essential to providing an end-to-end specification and verification method for System on Chip (SoC)
protocols. Without mathematical rigor, no translation can be trusted to completely represent the LSC
specification, while inefficiency renders even provably sound translations useless in verifying the correctness
of industrial-strength protocols. Previous work shows that the LSC-to-temporal logic and LSC-to-automata
translations can be automated and formalized for the LSC language. In the LSC-to-temporal logic transla-
tion, the extraordinary size of the resulting formula limits the scalability of the charts that can be translated
and verified. Our work, on the other hand, leverages intuitive temporal logic reductions to generate a for-
mula that is at most quadratic in the size of the chart and demonstrates the benefits of the improved
translation on several examples.

Keywords: live sequence chart, temporal logic, translation, linear, polynomial, spin, nusmv, reduction,
scenario, verification, specification, ip core

1 Introduction

Recently, development trends have shifted towards building systems by integrating
numerous heterogeneous Intellectual Property (IP) cores on a single chip. Such
system on chip (SoC) designs implement multiple communication protocols that
are necessary for the IP cores to interface and interact with each other. Given
this trend, it becomes important to not only verify the individual IP cores, but the
interface design and implementation as well. Verification of the interface provides
the IP integrators the peace-of-mind guarantee of the IP core’s communication

1 Email:rahul@cs.byu.edu
2 Email:egm@cs.byu.edu
3 Email:annette.bunker@intel.com
4 Annette Bunker performed this work while at USU.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kumar, Mercer and Bunker

Logic/Automata

System

Model Checker YES/NO

LSC Specification

Fig. 1. The process of using scenario-based specifications to verify systems.

protocol as well as ease of integration in the SoC; thus, providing benefits to the IP
core developers and integrators.

Pivotal to any verification effort is the ability to develop specifications against
which the system in question is to be verified. Traditionally, English has been the
default language choice for specifying and describing communication protocols. In
our experience, English is not an ideal medium for expressing protocol specifications
because of its context sensitive, imprecise, and cumbersome nature.

Protocol Live Sequence Charts (PLSCs) are a scenario-based language especially
targeted for protocol design and verification of SoC systems implementing proto-
cols [6]. Scenario-based languages, like PLSCs, provide a more intuitive and math-
ematically precise language for describing system interactions. Strictly speaking,
PLSCs are a restricted form of Live Sequence Charts (LSCs) [5,7]. Additionally,
they provide syntactic constructs for easily specifying certain protocol-specific be-
haviors such as clocks and invariants. As an example of the conciseness and expres-
sive power of PLSCs, the Virtual Component Interface (VCI) SoC communication
protocol has been translated from its 60 page English format to a one page PLSC
chart describing all possible interactions [6]. As PLSCs are a subset of LSCs, we
concern ourselves with LSCs for the remainder of the paper.

LSCs can be used at various stages of the development and verification process.
Initially, LSCs can be used to verify properties of the communication protocol to
guarantee behaviors of the protocol. Further in the development and testing stages
of the system, LSCs can provide a specification against which implementations are
verified. LSCs can also be published as the supported interface of the IP core.

We focus on the problem of formally verifying systems against LSC specifica-
tions. Fig. 1 shows a high level overview of the process of verifying a system against
an LSC specification as developed and presented in [6,15,11]. An LSC specification
and the system under test are given as input. The scenario-based specification is
translated to automata or temporal logic that is used to verify the system with the
help of a model checker (symbolic or explicit), as shown in the shaded portion of
the figure.

Inefficient translations to automata or temporal logic directly affect the verifi-
cation task complexity, thus, motivating the need to improve methods to translate
LSCs to temporal logic or automata. We present a translation of LSCs to temporal
logic that generates a temporal logic formula which is of at most quadratic size with
respect to the number of maximal messages of the LSC. Earlier translations produce
formulas that are of quadratic size with respect to the size of the chart [15,18], which
in the average case, is much larger compared to the number of maximal messages

2

Kumar, Mercer and Bunker

in the chart. The translation uses logic minimization over the until (U) operator to
improve upon earlier translations. We prove that our improved translation covers
the same set of behaviors as those specified by the quadratic translation in [15] and
is more than competitive with the work presented in [11], which translates LSCs
directly to automata. Further, we extend the translation to other constructs of the
LSC grammar that have not been directly translated to temporal logic in earlier
research. Finally, we present results in explicit and symbolic model checking that
show the benefits of using a smaller formula during verification as generated by our
improved translation. Specifically, the verification time and state space are greatly
reduced, especially in cases where counterexamples need to be generated.

2 Related Work

LSCs extend the semantics of MSCs to be able to specify provisional behav-
ior [16,7,5]. Additionally, LSCs have also been used in the past to model and
verify systems. Work in [4] describes the modeling of an air traffic control system
and the verification performed on the system. Work in [14] describes the modeling
of an automotive system using LSCs. Other such examples utilize the expressive
power of LSCs to concisely describe and verify systems and relate them to other
specification languages as well [3,12,8].

There is ongoing interest in the model checking of LSCs and translation of LSCs
to automata for the automatic synthesis of systems [13,1,9,10]. Additionally there
has been significant work done in translating LSCs to temporal logic for verification
of systems. The major limitation of translating LSCs to temporal logic is the sheer
size of the resulting temporal logic formula [15,18]. In [6], small and efficient-to-
verify ordering properties are generated from LSCs but no formal relationship is
established between the system and the specification. Although the system satisfies
the ordering properties, the properties do not imply that the system implements the
LSC specification. In [15], an LSC is translated to an LTL formula that is quadratic
in the size of the LSC. The size of the LTL formula is large enough to hinder the
verification of anything but small LSCs. The work in [15] forms the basis of our
work.

The work in [11], and [17,18] give an alternate verification approach in an effort
to avoid the explosion encountered during the LSC-to-temporal logic translation.
The approach unwinds the LSC to create an automaton with size proportional to the
number of reachable states in the LSC, and it uses the automaton in an multi-tiered
verification effort comprised of four different model checking procedures ordered by
least-to-worst algorithmic complexity: reachability analysis with safety observer,
ACTL model checking with and without observer, and finally LTL model check-
ing. If a less powerful technique is not able to complete the verification, then the
approach moves to the next procedure until it arrives at full LTL model checking.
Although the approach deals with the full semantic model of LSCs, except Kleene
stars, reachability is never powerful enough in systems that are non-timed as seen
in the results from [11] where at least three procedures are run before obtaining an
actual verification result in the non-timed charts. The need for the more powerful
model checking procedures is critical to the work in this paper because the proce-

3

Kumar, Mercer and Bunker

Process1 Process2 Process3

p1

p3

p4

m3

m4

Process0

p5

p2

m2

m6

m1

m5

p4 p5

p3

a

m1 m2

m6

⊥

m5

m3

m4

>

p1 p2

(a) (b)

Fig. 2. A LSC illustrating most of the language features supported in this work with a lattice defining the
partial order on messages in the chart. (a) The LSC. (b) The partial order defined on the messages in the
LSC.

dures require a temporal logic formula. The size of the formula produced from the
automaton-to-temporal logic translation in [11] results in such a large formula that
ACTL and LTL verification are only feasible on small non-concurrent charts.

The LSC-to-temporal logic translation in this paper produces an LTL formula
that is small enough to be practical in even highly concurrent charts, and we show
this by presenting results for LTL verification on charts larger and more concurrent
than those presented in [11]. In other words, a direct verification can be performed
using our translation without having to use the multi-tiered approach in [11] since
we address the original problem of formula size. Smaller formula sizes yield better
verification times and greater scalability to larger charts and systems.

3 Live Sequence Charts

In this section we formalize our presentation of LSCs before relating them to LTL
and verification. For simplicity and space purposes, the semantics only deal with a
restricted set of the full LSC grammar; although, the translation extends to most
of the LSC semantic constructs as discussed in Section 7.

An LSC is a graphical language for specifying communication between agents in
a system [16,7,5]. Fig. 2(a) is an example LSC that contains the relevant language
features discussed in this section. The boxes at the top of the figure are agents
in the system. Each agent has a vertical instance line descending from the agent.
The horizontal lines with filled arrowheads are synchronous messages. Synchronous
messages force the send and receive events of the message to occur in the same
state; thus, the sender and receiver have to be at their respective send and receive
locations in the chart.

Messages in the LSC are divided into a pre-chart and a main chart. The pre-
chart is the activation condition for the main chart and indicates the scenario in
which the main chart operates. It is represented by the dashed hexagon in the figure.
The main chart (directly below the pre-chart) is represented by the rectangle. A
universal chart that specifies mandatory behavior is drawn with a solid line and
an existential chart specifying provisional behavior is drawn with a dashed line.
Universal charts force the occurrence of the main chart events after every occurrence

4

Kumar, Mercer and Bunker

of the pre-chart. Existential charts only assert the presence of one instance of the
pre-chart and main chart events, and do not force the main chart to occur after
every occurrence of the pre-chart. For the LSC shown in Fig. 2(a), the pre-chart is
satisfied by a trace that contains the messages {p1, p2} in any order, followed by p3,
and finally {p4, p5} in any order. Note that the messages p1 and p2 are not ordered
with respect to each other but are ordered with respect to p3. The same observation
holds for the messages {p4, p5} and p3. Once the pre-chart has been satisfied, the
mandatory behavior of the universal chart forces the main chart to occur after the
pre-chart. The main chart is satisfied if the messages {m1,m2} occur in any order,
followed by m3, m4, and finally the messages {m5,m6} in any order.

We use the symbol c to denote an individual chart like that in Fig. 2(a). The
set of instance lines for a chart is given by inst(c). An instance line has locations
to track the state of the associated agent. For an instance line i and chart c,
dom(c, i) = {l0, l1, . . . , lmax (i)} is the set of locations for i in c with the first location
(top most location for a process line) given by l0 and the last location given by
lmax (i) when moving from the top to the bottom of the instance line. As locations
are not uniquely labeled in the chart across instance lines, the set of pairs dom(c) =
{〈i, l〉 | i ∈ inst(c) ∧ l ∈ dom(c, i)} represents all instance and location pairs in a
chart c. The complete state of a chart is the state of the individual instances as
denoted by their current location. The initial state has every instance in its first
location. The state of the chart evolves as instances move from one location to
another down the chart.

The symbol AP denotes the set of messages in the system. Communication
is specified as a triple of the form (〈i, l〉, e, 〈i′, l′〉), where e ∈ AP is the message
communicated from 〈i, l〉 to 〈i′, l′〉. The set of all message communications for a
chart is given by the relation R(c). Well-formed charts are charts where the relation
R(c) is acyclic. This work, like [15], only considers well-formed charts.

The pre-chart begins at the first location, l0, for each instance line. The main
chart is the box below the pre-chart. A special location is reserved to denote the
start of the main chart (end of the pre-chart). For each instance line, i, the last
location, lmax (i), marks the end of the main chart. As such, we require three unique
locations in a chart that are not used by messages: the start of the pre-chart, the
start of the main chart (end of the pre-chart), and the end of the main chart;
all other locations must be used by messages. We use p to represent messages in
the pre-chart, m to represent messages in the main chart, and e to represent any
message in the chart regardless of position in the chart.

A chart defines a partial order on its messages as its state changes on location
transitions. To be specific, we introduce the symbols > (top), a (middle), and ⊥
(bottom) to synchronize the agents when the chart starts, completes its pre-chart,
and completes its main chart, respectively. The function shown in Fig. 3 returns the
letter that is communicated in a message or the symbol >, a, or ⊥. For convenience,
we define msg(c), msgp(c) and msgm(c) to be the messages of the entire chart, the
pre-chart, and the main chart respectively.

We define an order relation, �, to capture the sequences of messages and symbols
as specified in the instance lines when starting at the first locations and traversing

5

Kumar, Mercer and Bunker

Fig. 3. Function that returns letter given a location

msg(c)(〈i, l〉) =

e if ∃e, i′, l′ : (〈i, l〉, e, 〈i′, l′〉) ∈ R(c) ∨ (〈i′, l′〉, e, 〈i, l〉) ∈ R(c)

> if l = l0

⊥ if l = lmax (i)

a otherwise

the lines to their last locations:

∀〈i, li〉, 〈i, li+1〉 ∈ dom(c), msg(c)(〈i, li〉)�msg(c)(〈i, li+1〉).

We do not explicitly describe the rules of moving from one state to another. Rather,
we relate the message sequences as observed along each instance line in the order
relation. In other words, the order relation describes the sequence of messages ob-
served in the scope of the individual instance lines. The locations that communicate
each message in the chart connect the sequences observed in one agent to those of
the other agents. A partial order, ≺, on messages and symbols is created from
the order relation (/) by adding to it the reflexive terms and then computing its
transitive closure. The partial order induced by the chart in Fig. 2(a) is shown in
Fig. 2(b).

The lattice formed by the partial order shows those messages that are unordered
with respect to other messages in the chart. The observation is key to our improved
translation because these events must be ordered before synchronizing events but
not relative to each other. For convenience in writing the necessary ordering prop-
erties, we also define maxm(c) = {e | e / ⊥} and maxp(c) = {e | e / a} to be
the maximal messages of the main chart and the pre-chart respectively. Intuitively,
maxm(c) is the set of messages that occurs last in the main chart and maxp(c) is
the set of messages that occurs last in the pre-chart and immediately before the
start of the main chart.

An LSC specification is a set of scenarios, C, defined in individual charts, c.
For a given LSC specification, the equivalent temporal logic specification is given
as ψ =

∧
c∈C ψc where ψc is the temporal logic formula for chart c using one of the

translation approaches described in this work. A proof for the relationship between
a system, an LSC specification, and the generated temporal logic formula is given
in [15]. We summarize the proposition here and assert that since our improved
translation is equivalent to the translation in [15], the proposition holds for our
improved translation as well.

Proposition 3.1 Given a set of LSCs, C, for a specification, let ψ be the temporal
logic formula

∧
c∈C ψc, S be a system implementing the scenarios in C, and s0 be

the initial state of the system. Then

S, s0 |= ψ ⇔ ∀c∈CS, s0 |= c.

The translation, as presented in [15], writes a property for every entry in the par-

6

Kumar, Mercer and Bunker

tial order induced by the chart; thus, producing a formula that is at least quadratic
in the size of the chart.

4 Quadratic Translation of LSCs to LTL

Two kinds of properties are generated in the quadratic translation of [15]: properties
that establish the order between any two messages in the chart (φ properties) and
properties that guarantee the uniqueness of each message in the chart (χ properties).
For any two messages xi and xj , such that xi ≺ xj in the partial order imposed
by the chart, the property φxi,xj = ¬xj U xi is generated stating that the message
xj does not occur until message xi has occurred. For any two messages xi and xj

such that xi 6≺ xj , the χxi,xj = (¬xi∧¬xj) U (xi∧ X ((¬xi∧¬xj) U xi)) property
states that the message xi occurs twice before xj . The negation of this property
states that message xi does not occur twice before message xj .

The quadratic translation for a universal chart as defined in [15] is given in
Equation 1. Again, we use the letters e, p and m to denote the events in the chart
in general, pre-chart, and main chart respectively. Equation 1 is divided into two
parts by the implication; if the pre-chart is correctly satisfied (left), then the main
chart has to follow (right). The top terms on each side of Equation 1 describe the
order of the pre-chart and main chart messages. The φ properties are generated
for all pairs belonging to the ≺-relation as restricted by the p,m and e notation.
The middle term on the left side guarantees that no main chart events occur in
the pre-chart, thus, correctly framing the pre-chart. The middle term on the right
guarantees the occurrence of the maximal messages (since they do not occur on the
right side of any φ formula). The framing is important because it is responsible for
correctly triggering the verification of the main chart events. In other words, we
do not check for main chart events until we have correctly observed the pre-chart
events. Finally, the bottom terms on each side of Equation 1 guarantee that each
message only occurs once in the chart. For the example LSC shown in Fig. 2(a),
Equation 1 generates 50 pre-chart properties and 80 main chart properties. In this
context, a property refers to a single φ or χ term generated by the translation.

ψc = G

∧
pi≺pj

φpi,pj

∧∧
∀pi,mj

φpi,mj

∧∧
pi⊀pj

¬χpj ,pi

⇒

∧
mi≺mj

φmi,mj

∧∧
mj is max

F mj

∧∧
∀ei,mj

¬χei,mj

(1)

The complexity analysis of the translation is divided into two parts: analyzing
terms that establish order (top left, middle left, top right, and middle right terms)
and uniqueness (bottom right and bottom left) in Equation 1. The total num-
ber of individual properties required to establish order is bounded by |msgp(c)|2 +

7

Kumar, Mercer and Bunker

(|msgp(c)| × |msgm(c)|) + |msgm(c)|2 + |maxm(c)|. For establishing uniqueness, the
number of properties is bounded by |msgp(c)|2+(|msgp(c)|+|msgm(c)|)×|msgm(c)|.
Combining these bounds gives us a complexity that is at least quadratic in the size
of the chart.

Despite the quadratic bound of the translation presented in [15], which improves
on the classical exponential translation, the resulting formula is too large to be
practical. The large size is due to the use of the partial order in Equation 1.
Building properties from the ≺-relation includes redundant ordering formulas in
the pre-chart and the main chart. For example, if ¬p3 U p2 and ¬p2 U p1 hold,
then by transitivity, we know that ¬p3 U p1 holds, and do not need to explicitly
establish the relation. Additionally, checking for uniqueness of an event with respect
to every other event includes multiple redundant checks. For example, if message
m5 does not occur until after m3, and message m1 occurs once before m5 and m3,
then it is implied that message m1 occurs only once before m3. These reductions
are formalized in the next section.

5 Temporal Logic Reductions

The improved translation makes use of transitivity to reduce the size of the quadratic
formula presented in [15]. It eliminates both ordering (φ) and uniqueness (χ) proper-
ties from the formula. These reductions are discussed in the following sub-sections. 1

5.1 Reducing Ordering Properties

The following reduction result for the until (U) LTL operator is a general modal
logic calculation which has been restated for this domain from [2]; it forms the basis
of our reduction in the number of φ formulas in the final translation.

Lemma 5.1 For any three messages xt, xu, and xv and a trace π = s0, s1, ...

M, π |= (¬xv U xu) ∧ (¬xu U xt) ⇒M,π |= (¬xv U xt).

Intuitively, the U-operator forces the existence of the right hand predicate, and
ensures that the left hand predicate holds until the state where the right side predi-
cate occurs. The above result, takes advantage of the transitivity of the U-operator
to eliminate properties that do not need to be explicitly verified but are part of the
partial order on messages induced by the chart.

Furthermore, since there are events that may be succeeded by multiple unordered
events, it is useful to be able to collapse multiple ordering properties relative to a
single event into a single ordering property. An example of the reduction is seen
in Fig. 2(a) where we would not expect to see p5 or p4 until p3; and p5 and p4 are
unordered relative to each other. In essence, the reduction collapses expressions
that share the right hand term of the U-operator into a single property.

1 All proofs are available in the full version of the paper available at
http://vv.cs.byu.edu/∼rahul/LSCTOLTL.pdf

8

Kumar, Mercer and Bunker

Lemma 5.2 For a given set of messages N and a message xi such that ∀xj ∈
N,xi ≺ xj

M,π |=
∧

xj∈N

(¬xj U xi) ⇔M,π |= (
∧

xj∈N

¬xj) U xi.

For our example, Lemma 5.2 results in a single property, rather than two prop-
erties, that does not allow either p5 or p4 until it sees p3.

We now show via application of Lemma 5.1 and Lemma 5.2 how the total number
of ordering properties can be reduced in the quadratic translation of [15]. First, we
define the function next(c)(ei) = {ej | (ei/ej)∧(ej 6∈ {>,a,⊥})}. The next(c) func-
tion, given a message ei, returns the set of immediate successors according to
/-relation induced by the instance lines involved in the message communication.
Using this function, we directly reference Lemma 5.2 to coalesce φ properties. We
also define the φ′ helper function as follows:

φ′xi,N = (
∧
o∈N

¬o) U xi.

The φ′ function is a modified version of the φ function presented earlier. The
second argument of the φ′ function is a set rather than a single event and relies
on Lemma 5.2 to produce a single ordering property when N meets the necessary
conditions. We now present the main reduction for this section.

Corollary 5.3 Given a chart, c, the ordering imposed by the formulas including the
transitive and not including the transitive properties in the partial order is exactly
the same.

M,π |=
∧

pi≺pj

φpi,pj ⇔M,π |=
∧

p∈msg(c)

φ′p,next(c)(p).

The corollary reduces the set of properties needed to specify the order of events by
omitting transitive properties which are implied by Lemma 5.1, and it proves the
equivalence to the set of properties that explicitly writes the order between every
event. Intuitively, the right formula is written from the /-relation while the left
formula is written from the ≺-relation. The U-operator implies by transitivity the
presence of the extra orderings included in the ≺-relation.

5.2 Reducing Uniqueness Properties

The χ formula in the previous section states that message xi occurs twice before
message xj , and the negative form of the χ formula states that message xi does
not occur twice before message xj . The next reduction result eliminates redundant
properties when establishing uniqueness of a message in a chart (main or pre-chart).
The reduction result is stated as follows:

Lemma 5.4 Given k messages in a set N that occur in the order e1 ≺ . . . ≺ ek,
if a message ei does not re-occur between its occurrence and the final message ek,
then it does not re-occur between its occurrence and any intermediate message ej.

M,π |=
∧

ei 6≺ej

¬χej ,ei ⇔M,π |=
∧

ei∈N

¬χei,ek
.

9

Kumar, Mercer and Bunker

Intuitively, Lemma 5.4 states that given a validated message ordering, we only
need to establish the uniqueness of a message with respect to the last message in
the ordering, as opposed to establishing uniqueness with respect to every message
in the ordering.

6 Improved Translation of LSCs to LTL

The improved translation is produced by using the reduction results of Lem-
mas 5.1, 5.2, 5.4, and Corollary 5.3. The improved formula, ψ′c, for universal charts
is shown in Equation. 2. The improved translation has a structure similar to the
structure of the quadratic translation shown in Equation 1. The key differences are
in the use of the /-relation (used by next(c) function) for specifying order, and the
use of the maxm(c) function for specifying fewer uniqueness properties. For explicit
state model checking, the formula in its negated form is synthesized to automata for
the verification of systems. Any violation provides a counterexample of the chart,
which represents a flaw in the system implementing the chart. For symbolic model
checking, the formula is not negated but directly verified on the system.

ψ′c = G

∧
e∈msgp(c)

φ′e,next(c)(e)

∧∧
e∈maxp(c)

φ′e,msgm (c)

∧∧
(e,p)∈msgp(c)×maxp(c)

¬χe,p

⇒

∧
e∈msgm (c)

φ′e,next(c)(e)

∧∧
(e,m)∈msg(c)×maxm (c)

¬χe,m

(2)

Equation 3 shows the translation of existential charts. Since existential charts (pro-
visional behavior) have to be satisfied by some trace of the system, the EF operator
is used [11]. The existential formula states that there exists a trace in the future
that satisfies the sequence of events as described in the existential chart. Similar
to the earlier formulas, the φ′ properties establish the order of the messages of the
pre-chart and the main chart, and the χ properties establish the uniqueness of the
messages with respect to the maximal messages in the chart. Equation 3 is a CTL*
formula. Negating this CTL* formula gives us an LTL formula that has the form
AG (¬(θorder∧θuniqueness)) where θorder are the properties used to specify the order
of events and θuniqueness are the properties that specify uniqueness of messages in
the chart. This LTL formula is used for explicit or symbolic state verification. A
violation of the formula provides a witness to the existential chart, which is the
desired result, since an existential chart should be satisfied by at least one run of
the system. If, on the other hand, no witness is generated, then the implementation
violates the specification. Again, it should be noted that we start with a CTL*

10

Kumar, Mercer and Bunker

formula but actually perform LTL verification since the negated formula is in LTL.

EF

 ∧
e∈msg(c)

φ′e,next(c)(e) ∧
∧

(e,m)∈msg(c)×maxm (c)

¬χe,m

 (3)

Theorem 6.1 The improved translation as presented in Equation 2 and Equation 3
is equivalent to the quadratic translation presented in [15].

M,π |= ψc ⇔M,π |= ψ′c.

For the example LSC in Fig. 2, the improved translation generates 13 properties
for the pre-chart and 28 properties for the main chart. This provides a dramatic
reduction over the 50 and 80 properties generated using the translation presented
in [15].

7 Translating Additional Constructs

The work presented in this paper can translate all constructs except non-bonded
conditions (conditions not tied to a specific message), temperatures (progress is
forced or unforced), tolerant behavior (allowing multiple instances of an event within
a chart), and multiplicities (Kleene star). In our experience, these constructs are
rare in practice, and charts omitting these constructs are more than expressive
enough to specify IP core interactions. We briefly present extensions to remaining
constructs.

Asynchronous Messages: Asynchronous messages are drawn in charts with
an open ended arrow head. They are used to specify messages where the receiver
may not be ready to receive the message; thus, an asynchronous message produces
two events as opposed to a single event as observed for synchronous messages. We
build a new /-relation that ranges over the individual events rather than the letters
of the messages and forces the send event to always occur before the receive event.
Properties are then generated from this new /-relation.

Co-regions: Co-regions, specified by dashed lines parallel to the agent instance
line, are used to express unordered events. To translate co-regions into temporal
logic, we do not explicitly specify the order of all the events. Instead, we specify
the order of the events that are to occur before and after the co-region and force
the existence of the co-region events in the correct order.

Bonded Conditions: Bonded conditions are boolean predicates that are
checked with a message in a simultaneous region (all events occur in the same
state); thus, they are bonded to the message. Since a message always occurs with
the condition (simultaneous region), the temporal logic translation only needs to
consider the conjunction of the boolean predicate of the condition and the message.

Invariants: Invariants are boolean predicates that can be specified for a certain
region of the LSC. We treat invariants as a set of bonded conditions. For each
event in the region of invariance, the invariant predicate is attached to the event
during translation. Using this approach, the invariant is only checked when an event
occurs.

11

Kumar, Mercer and Bunker

8 Analysis

The formulas presented in Equation2, Equation 3 and their extensions to addi-
tional constructs are quadratic in the number of maximal messages in the main
chart, with all except one term being linear. In this context, linear implies a
one-to-one relation between the LSC event and a φ′ or χ formula. As before, we
break up the analysis into two parts: one for the number of individual proper-
ties needed to establish event order and the second for the number of individual
properties needed to establish uniqueness. The terms used to specify order are
bounded by |msgp(c)| + |maxp(c)| + |msgm(c)| properties, which is linear as com-
pared to the quadratic number of properties generated by the quadratic trans-
lation presented in [15]. Terms used for specifying uniqueness are bounded by
(|msgp(c)| × |maxp(c)|) + (|msg(c)| × |maxm(c)|) properties, which is directly pro-
portional to the number of maximal messages in the main chart and pre-chart as
opposed to the translation in [15] where the corresponding bound is directly pro-
portional to the total number of messages in the main chart. In the typical case, the
total number of main chart messages is much greater than the number of maximal
messages (which can be greater than one only if the chart ends in a set of concurrent
messages). Equation 3 has similar bounds.

9 Results

We are interested in understanding the performance of our improved LSC-to-
temporal logic translation in both explicit and symbolic state model checking in
terms of total verification time. Ideally, we would like to directly compare verifica-
tion time using our translation to that in [15] and verification using the iterative
approach in [11]. Such a direct comparison to [11] is not possible, however, because
we do not have access to the implementation of the approach (which builds on VIS).
Since the specification descriptions of [11] are the worst-case specifications for the
translation process, we design an experiment using the specification descriptions
from the empirical study in [11], and only indirectly compare the results.

The independent variables (inputs) in our experiment are the two translating
approaches, the model checkers, the specifications, and the implementations. The
model checkers are SPIN for explicit state model checking and NuSMV for symbolic
state model checking. We generate specifications SpecB, and SpecC containing five
to seven messages, and we use the A2, A3, and A4 specifications from [11]. The Ax
specifications are highly concurrent specifications consisting of 3 non-timed sequen-
tial co-regions with x messages in each co-region. For example, the A4 specification
has twelve total messages that appear in three groups of four concurrent messages.
The Ax specifications yield the worst-case formula size for our translation.

The implementations of the specifications in our experiment are broken into two
categories: those that correctly implement the specification and those that do not as
indicated by the e annotation on the model name (created by introducing an error in
the initial stages of the main chart). All of the Spec* systems directly implement the
message sequences in the specification. The Ax implementations, however, follow the
pattern described in [11] in that they first perform arbitrary computation by solving

12

Kumar, Mercer and Bunker

Table 1
Verification results using the quadratic and improved translations and SPIN.

Specification Test Quadratic Translation Improved Translation

States Time (seconds) States Time (seconds)

SpecB
SysA 2612 0.02 2158 0.02

SysA e 2446 0.07 1965 0.06

SpecC
SysB – 4175 0.03

SysB e – 4589 0.12

A2
soko 3847560 104 1557700 36

soko e 1479320 32 620902 12

A3
soko – 2840220 69

soko e – 1031970 22

a puzzle and then implement the message sequence described in the specification.
The pattern is similar to one observed in SoC designs using IP cores that perform
some local computation followed by an exchange of information as specified by the
IP core’s interface and communication protocol. Since the puzzles nor the sizes
of the implementations in [11] could be obtained, we use the sokoban block sliding
puzzle (soko), the bridge crossing puzzle (bridge), and the Alternating Bit Protocol
(abp4) to represent arbitrary computation. 5

The dependent variables (outputs) in all our experiments are the number of
states explored and the verification time, which we refer to as wall clock time. Wall
clock time does not include LTL synthesis time for explicit state model checking.
All of our experiments are run on an Intel Pentium 4 3.0 GHz machine with 2
GB of main memory. LTL synthesis is handled using LTL2BA. The results of our
experiments are presented in Table 1 (SPIN) and Table 2 (NuSMV). A ’–’ entry in a
table indicates that LTL synthesis timed out (> 2 hours). The quadratic translation
is the translation from [15] while the improved translation is the translation as
presented in this paper.

The explicit state model checking results in Table 1 show the verification time
and number of states explored is much smaller for the improved translation com-
pared to the quadratic translation. For specification A2, the improved translation
completes in less than half the time of the quadratic translation and produces half
as many states, thus, supporting our claim that verification cost is directly propor-
tional to the size of the formula. Note that LTL synthesis times out for the quadratic
translation for two of the models. LTL2BA can be a limiting factor for explicit state
model checking since LTL synthesis also times out for both the quadratic and the
improved translations for models and specifications not included in the table.

Table 2 shows that the improved translation results in a much smaller verifica-
tion time in symbolic model checking. For specification A4, the improved translation
completes the verification in less than a fourth of the time required by the quadratic
translation. The performance improvement is noticeably larger when a counterex-
ample trace is generated for the model. More importantly, the improved translation
readily verifies A5 implementations which are not verified in [11] due to the large
formula size from the translation. In fact, the improved translation allows direct

5 All of our models, and specification formulas can be downloaded at
http://vv.cs.byu.edu/∼rahul/experiments.tar.gz

13

Kumar, Mercer and Bunker

Table 2
Verification results using the quadratic and improved translations and NuSMV.

Specification Model States Quadratic Time (seconds) Improved Time (seconds)

Specification A2

bridge 76992 14 5

abp4 2236420 30 11

bridge e 76992 29 13

abp4 e 2236420 76 27

Specification A3

bridge 76992 22 8

abp4 2236420 59 20

bridge e 76992 56 20

abp e 2236420 146 50

Specification A4

bridge 76992 49 11

abp4 2236420 174 29

bridge e 76992 132 26

abp e 2236420 337 67

Specification A5

bridge 76992 175 26

abp4 2236420 555 73

bridge e 76992 509 56

abp e 2236420 1271 131

LTL verification of the Ax implementations which in the multi-tiered approach of
[11] require three separate verification runs before obtaining a meaningful result.

There are three key threats to validity in this empirical study: first, the omit-
ted times for LTL synthesis in explicit state model checking; second, the indirect
comparison to the multi-tiered approach of [11], and third, the model checker imple-
mentations. The LTL synthesis time is a one time cost that either completes or does
not complete. We assume that once synthesized, the formula is reused over several
verification runs as the system is implemented. In our experiment, all LTL synthesis
occurred in less than three minutes of wall clock time. Our experiments try to du-
plicate the models in [11] as closely as possible. Anecdotally, our results scale to the
A4 and A5 specifications in very little time and with great ease in NuSMV, which
is of prime importance, since the specifications represent our worst-case for this
translation. Real world specifications tend to be much less concurrent and smaller
as compared to the Ax specifications. As for the model checkers, default decisions
in model checker implementations sometimes affect performance. It is not known
if a different model checker such as VIS with different default decisions would give
different results to invalidate those presented here. We suspect such a result to be
highly unlikely since we know that formula size (as well as nesting depth) directly
affects the verification cost, and the formula generated by the improved translation
is much smaller than any other known translation.

10 Conclusions and Future Work

We present an improved translation of LSCs to temporal logic for a subset of LSCs
by capitalizing on temporal logic reductions to reduce the number of individual
properties needed for specifying event order and uniqueness. The known quadratic
translation is directly proportional to the number of messages in the main chart as
opposed to the improved translation that is proportional to the number of maximal
messages in the main chart, which in the common case, is much smaller than the
total number of messages in the main chart. We present results that show the ben-

14

Kumar, Mercer and Bunker

efits of using the improved translation during automata synthesis and verification
in both the explicit and symbolic domains. Verification time, number of states, and
automata synthesis benefit from the improved translation because of the smaller
formula size. Future work in this area involves extending the translation to the
LSC constructs of non-bonded conditions and temperatures. We are also investi-
gating methods to decompose the formula into smaller pieces, as well as creating
specialized algorithms to take advantage of the formula structure for optimized LTL
synthesis. By doing so, we plan to complete the verification chain for SoC interface
design and validation.

References

[1] Alur, R. and M. Yannakakis, Model checking of Message Sequence Charts, Proc. of the 10th Inter.
Conf. on Concurrency Theory (1999), pp. 114–129.

[2] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press New York,
NY, USA, 2001.

[3] Bohn, J., W. Damm, J. Klose, A. Moik, H. Wittke, H. Ehrig, B. Kramer and A. Ertas, Modeling and
validating train system applications using Statemate and Live Sequence Charts, Proc. of the Conf. on
Integrated Design and Process (2002).

[4] Bontemps, Y., P. Heymans and H. Kugler, Applying LSCs to the specification of an air traffic control
system, Proc. of the 2nd Int. Work. on Scenarios and State Machines: Models, Algorithms and Tools
(SCESM03), at the 25th Int. Conf. on Soft. Eng.(ICSE03), Portland, OR, USA, May (2003).

[5] Brill, M., W. Damm, J. Klose, B. Westphal and H. Wittke, Live Sequence charts: An introduction to
lines, arrows, and strange boxes in the context of formal verification, Lec. notes in Computer Science
(2001), pp. 374–399.

[6] Bunker, A. and G. Gopalakrishnan, Verifying a VCI bus interface model using an LSC-based
specification, in: Proceedings of the Sixth Biennial World Conference on Integrated Design and Process
Technology, Society of Design and Process Science, 2002, p. 48.

[7] Damm, W. and D. Harel, LSCs: Breathing life into Message Sequence Charts, Formal Methods in
System Design 19 (2001), pp. 45–80.

[8] Damm, W. and J. Klose, Verification of a radio-based signaling system using the STATEMATE
verification environment, Formal Methods in System Design 19 (2001), pp. 121–141.

[9] Harel, D., H. Kugler and A. Pnueli, Synthesis Revisited: Generating statechart models from scenario-
based requirements, Formal Methods in Software and Systems Modeling (2005), pp. 309–324.

[10] Heymans, P. and Y. Bontemps, Turning high-level Live Sequence Charts into automata, Proc. of the
First Inter. Work. on Scenarios and State Machines (SCESM) (2002).

[11] Klose, J., T. Toben, B. Westphal and H. Wittke, Check it out: On the efficient formal verification of
live sequence charts, in: CAV, 2006, pp. 219–233.

[12] Klose, J. and B. Westphal, Relating LSC specifications to UML models, Proc. of the Second Inter. Work.
on Integration of Specification Techniques for Applications in Eng. (INT 2002), Grenoble, France (2002).

[13] Klose, J. and H. Wittke, An automata based interpretation of live sequence charts, in: Proc. of the
7th Inter. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS01)
(2001), pp. 512–527.

[14] Knieke, C., M. Huhn and U. Goltz, Modeling and simulation of an automotive system using LSCs,
CSDUML (2005).

[15] Kugler, H., D. Harel, A. Pnueli, Y. Lu and Y. Bontemps, Temporal Logic for Scenario-Based
Specifications, Proc. of the 11th Inter. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS05) (2005).

[16] Rudolph, E., P. Graubmann and J. Grabowski, Tutorial on Message Sequence Charts, Computer
Networks and ISDN Systems 28 (1996), pp. 1629–1641.

[17] Toben, T. and B. Westphal, Concurrent LSC Verification: On Decomposition Properties of Partially
Ordered Symbolic Automata, Electr. Notes Theor. Comput. Sci. 145 (2006), pp. 95–111.

[18] Toben, T. and B. Westphal, On the expressive power of LSCs, in: SOFSEM (2006), pp. 33–43.

15

	Introduction
	Related Work
	Live Sequence Charts
	Quadratic Translation of LSCs to LTL
	Temporal Logic Reductions
	Reducing Ordering Properties
	Reducing Uniqueness Properties

	Improved Translation of LSCs to LTL
	Translating Additional Constructs
	Analysis
	Results
	Conclusions and Future Work
	References

