Improving Translation of Live Sequence Charts to Temporal Logic

Rahul Kumar

Eric Mercer Annette Bunker

AVOCS 2007

Automated Verification of Critical Systems 2007

Trends: SoC, Multi-agent Systems

Automated Verification of Critical Systems 2007

Traditional Testing

Abstracted Environment

Automated Verification of Critical Systems 2007

Automated Verification of Critical Systems 2007

Scenario Based Specifications

- R.Z. ITU-T 120: Message Sequence Charts ٠
- Damm et. al.: Live Sequence Charts
- Bunker et. al.: Protocol Live Sequence Charts ٠

Automated Verification of Critical Systems 2007

Provo, UT 84606, USA

What do we have so far?

Automated Verification of Critical Systems 2007

Problems & Solutions

Bridge the gap between graphical specifications and verification methodologies

Systems 2007

Provo, UT 84606, USA

Live Sequence Charts

Kugler's Approach

 $G(\Theta_{\text{pre}} \Rightarrow \Theta_{\text{main}})$

Automated Verification of Critical Systems 2007

Kugler's Approach

 $G(P \Rightarrow \Theta_{main})$

Automated Verification of Critical Systems 2007

Kugler's Approach - Ordering

 $G(P \Rightarrow (\neg L U A) \land (\neg S U A) \land (\neg T U A) \land (\neg T U A) \land (\neg T U L) \land (\neg T U L) \land (\neg T U L) \land (\neg T U S) \land (F T))$

Automated Verification of Critical Systems 2007

Kugler's Approach - Uniqueness

 $G(P \Rightarrow \neg \chi_{A,L} \land \neg \chi_{A,S} \land \neg \chi_{A,T} \land \\ \neg \chi_{L,S} \land \neg \chi_{L,T} \land \\ \neg \chi_{S,T})$

 $\neg \chi_{a,b}$: $(\neg b \land \neg a) U (a \land X((\neg b \land \neg a) U a))$

Automated Verification of Critical Systems 2007

Kugler's Approach - Total

 $G(P \Rightarrow (\neg L U A) \land \neg \chi_{A,L} \land \neg \chi_{A,S} \land \neg \chi_{A,T} \land$ $(\neg S U A) \land \neg \chi_{L,S} \land \neg \chi_{L,T} \land$ $(\neg T U A) \land \neg \chi_{S,T} \land$ $(\neg S U L) \land$ $(\neg T U L) \land$ $(\neg T U S) \land$ (F T))

Automated Verification of Critical Systems 2007

Kugler's Approach - Drawbacks

- Very large formulas for small charts
- LTL to automata fails for large charts
- Verification fails for larger charts/models
- Limited set of LSC constructs translated

Reductions: Until Transitivity

Automated Verification of Critical Systems 2007

Reductions: Using Until Reduction

Automated Verification of Critical Systems 2007

Automated Verification of Critical Systems 2007

Using Uniqueness Reduction

G(]

$$\Rightarrow \neg \chi_{A,L} \land \neg \chi_{A,S} \land \neg \chi_{A,T} \land$$
$$\neg \chi_{L,S} \land \neg \chi_{L,T} \land$$
$$\neg \chi_{S,T})$$

Automated Verification of Critical Systems 2007

Automated Verification of Critical Systems 2007

G

Co-regions

 $(\neg c Ua) \land$ $(\neg c Ub) \land Fc$

Force a,b to occur but in any order

Automated Verification of Critical Systems 2007

Asynchronous Messages

Describe send and receive events

Automated Verification of Critical Systems 2007

Asynchronous Messages

 $(\neg b? Ub!) \land (\neg a? Ua!) \land (assumption)$ $(\neg b? Ua!) \land (\neg a? Ub!) \land$ $(\neg c? Ua?) \land (\neg c! Ub?) \land$ $Fc? \land Fc!$

Automated Verification of Critical Systems 2007

Conditions

Automated Verification of Critical Systems 2007

Conditions

Bonded Conditions

Non-bonded Conditions

Translation undecided

Analysis

Ordering

n

Worst case chart

Automated Verification of Critical Systems 2007

Analysis

<u>Uniqueness</u>

Worst case chart

k properties for each of the n messages (*k-1*) properties for each of the k messages

n*k

Automated Verification of Critical Systems 2007

Automated Verification of Critical Systems 2007

9

Analysis

Multiple maximal messages (m): Ordering: n Uniqueness: n*m

As $m \rightarrow n$, formula becomes quadratic

Automated Verification of Critical Systems 2007

G

Theoretical Results

- Ordering in linear properties
- Uniqueness in sub-quadratic properties
- Translation at *most* as opposed to at *least* quadratic
- Additional constructs
 - Existential charts
 - Co-regions
 - Asynchronous messages
 - Invariants and bonded conditions

Other specifications with 5-7 messages

Automated Verification of Critical Systems 2007

Experiments - Models and Verifiers

- Models
 - Promela models with simple message passing
 - Puzzle models followed by messages
 - "_e" models contain errors in main chart
- SPIN and NuSMV for model checking
- LTL2BA: explicit state automata generation

Empirical Results - LTL2BA

Specificatio n	Messages		Kugler's Translation		Improved Translation	
	Total Messages	Maximal Messages	Size	Time (s)	Size	Time (s)
SpecA	5	1	209	59	109	1
SpecB	5	2	175	428	142	2
SpecC	7	2	LTL2BA DNF		139	2

Empirical Results - SPIN

Specification	Model	Kugler'sT	ranslation	Improved Translation	
		States	Time (s)	States	Time (s)
SpecB	SysA	2612	0.02	2158	0.02
	SysA_e	2446	0.07	1965	0.06
SpecC	SysB		-	4175	0.03
	SysB_e		-	4589	0.12
A2	Soko	3847560	104	1557700	36
	Soko_e	1479320	32	620902	12
A3	Soko	-		2840220	69
	Soko_e		-	1031970	22

Empirical Results - NuSMV

Specification	Model	States	Kugler's Time (s)	Improved Time (s)
A2	bridge	76992	14	5
	Abp4	2236420	30	11
	Bridge_e	76992	29	13
	Abp4_e	2236420	76	27
A3	bridge	76992	22	8
	abp4	2236420	59	20
	Bridge_e	76992	56	20
	Abp4_e	2236420	146	50
A4	bridge	76992	49	11
	abp4	2236420	174	29
	Bridge_e	76992	132	26
	Abp4_e	2236420	337	67
A5	bridge	76992	175	26
	abp4	2236420	555	73
	Bridge_e	76992	509	56
	Abp4_e	2236420	1271	131

Automated Verification of Critical Systems 2007

Conclusions

- Reductions produce vast improvement
- Scalability still limited in explicit state
- Translating constructs can be difficult
- Is this translation minimal?
- What about LSC to automata?

Automated Verification of Critical Systems 2007

CS

Automated Verification of Critical Systems 2007

LSC To Automata: Liveness

Verify *AGAF(fair)* to enforce progress

P A L S true

Automated Verification of Critical Systems 2007

LSC to Automata: Conditions

Systems 2007

Provo, UT 84606, USA

Drawbacks

- Safety and progress checking performed in two separate runs
- Non-determinism because of conditions
- Undecided semantics of conditions

New Solution

Safety and Liveness in one run by verifying *EGEF(error)*

Automated Verification of Critical Systems 2007

Conditions in New Solution

Placement of error state fixes the problem of non-determinism as well as detecting errors!

Automated Verification of Critical Systems 2007

Advantages

- One shot verification using LSCs
- All constructs supported
- No non-determinism
- More error states means faster detection of errors in system
- Simple unwinding algorithm