6”‘ oue °

I{\PD!W\ oc;na»u gtc.umqm/

/Y\M\K | g“‘ﬁxvv\,ﬂ

SQQ:HD»\J 5»,6) Pmﬁts qgaczd(

5.5 HMAC

Recall that for message integrity we can compute a message authentication code, or
MAC, using a block cipher in cipher block chaining (CBC) mode. The MAC is the final
encrypted block, which is known as the CBC residue. Since a hash function yields a
different value if the input changes, we should be able to use a hash to verify message
integrity. But we can’t send the message M along with its hash k(M), since an attacker
could simply replace M with M’ and k(M) with h(M"). However, if we make the hash
depend on a symumetric key, then we can compute a hashed MAC, or HMAC.

How should we mix the key into the HMAC? Two obvious approaches are h(K, M)
and 2 (M, K). Suppose we choose to compute the HMAC as & (K, M). Thereis a potential



94 ’ HASH FUNCTIONS AND OTHER TOPICS

problem with this approach. Most crypto graphic hashes hash the message in blocks. For
MD35, SHA-1, and Tiger, the block size used is 512 bits. As a result, if M = (B1, By),
where each B; is 512 bits, then

h(M) = F(F(A, B1), By) = F(h(By), By) (.2)

for some function F, where A is a fixed initial constant. For example, in the Tiger
hash, the function F consists of the outer round illustrated in Figure 5.1, with each B;
corresponding to a 512-bit block of the input and A corresponding to the 192-bit initial
values of (a, b, ¢). :

If M= (M, X), Trudy might be able to use equation 5.2 to find h(K, M’)
from h (K, M) without knowing K, since, for K, M, and X of the appropriate size,

h(K, M) = h(K, M, X) = F(h(K, M), X) (5.3

where the function F is known.

Is h(M, K) better? It does prevent the previous attack. However, if it should happen
that there is a collision, that is, if there exists some M’ with h(M") = h(M), then by
equation 5.2, we have

h(M,K) = F(h(M), K) = F(h(M"), K) = h(M’, K) (X))

provided that M and M’ are each a multiple of the block size. This is certainly not
as serious of a concern as the previous case, since if such a collision occurs, the hash
function is insecure. But if we can eliminate this attack, then we should do so.

In fact, we can prevent both of these potential problems by slightly modifying the
method used to mix the key into the hash. As described in REC 2104 [133], the approved
method for computing an HMAC is as follows. Let B be the block length of hash, in
bytes. For MD35, SHA-1, and Tiger, B = 64. Next, define

ipad = 0x36 repeated B times

and

opad = 0x5C repeated B times.

_Then the HMAC of M is

HMAC(M, K) = H(K @ opad, H(K @ ipad, M))

which thoroughly mixes the key into the resulting hash, An HMAC can be used in place
of a MAC for ‘message integrity, HMACs also have several other uses, some of which
we’ll see in later chanterc



