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Abstract. One design strategy for developing intelligent agents is
to create N distinct behaviors, each of which works effectively in
particular tasks and circumstances. At each time step during task
execution, the agent, or bandit, chooses which of the N behaviors
to use. Traditional bandit algorithms for making this selection often
(1) assume the environment is stationary, (2) focus on asymptotic
performance, and (3) do not incorporate external information that is
available to the agent. Each of these simplifications limits these algo-
rithms such that they often cannot be used successfully in practice. In
this paper, we propose a new bandit algorithm, called AlegAATr, as
a step toward overcoming these deficiencies. AlegAATr leverages a
technique called Assumption-Alignment Tracking (AAT), proposed
previously in the robotics literature, to predict the performance of
each behavior in each situation. It then uses these predictions to de-
cide which behavior to use at any given time. We demonstrate the
effectiveness of AlegAATr in selecting behaviors in three problem
domains: repeated games, ad hoc teamwork, and a human-robot pick-
n-place task.

1 Introduction
Autonomous agents situated in complex environments often have a
set of behaviors (or generators) available to them. Created in any
number of ways (e.g., hand-coded or via reinforcement learning),
each generator specifies successful agent behaviors under some, but
likely not all, circumstances. For example, a cooperative strategy in a
prisoner’s dilemma when paired with tit-for-tat would be successful,
but the same strategy or behavior would struggle when paired with
an associate that always defects [2]. Successful agents should be able
to effectively determine which behavior generator for each situation
they encounter.

Bandit algorithms are designed for such scenarios. At each time
step, these algorithms select among N possible choices to maximize
expected rewards when the consequences of each choice are stochas-
tic and unknown beforehand [17]. Bandit algorithms are popular for
a variety of reasons. First, decision-making in the face of uncertainty
is a common challenge and is present in numerous fields, cultures,
and applications. Furthermore, several practical uses of bandit algo-
rithms exist in areas such as A/B testing [20], recommendation sys-
tems [15], clinical trials [23], and portfolio optimization [21].

Previous work has identified three key limitations of traditional
bandit algorithms [17]. First, their performance guarantees typically
hold only when the environment is stationary, an assumption that
is frequently violated in real-world settings. Second, they often are
tuned to asymptotic performance measures (e.g., no regret [1, 7, 4]).
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While high asymptotic performance is desirable, many real-world
tasks require agents to have effective short-term performance as well,
a capability that facilitates fast adaptation to changing environments.
Third, traditional bandit algorithms typically rely completely on em-
pirical (online) feedback, and do not incorporate useful external in-
formation that is available to them. This failure to incorporate exter-
nal information can limit the agent’s ability to learn quickly and to
achieve higher short-term performance.

As a step toward overcoming these limitations, we introduce a new
bandit algorithm, called AlegAATr (pronounced al@gad@r). Ale-
gAATr leverages Assumption-Alignment Tracking (AAT) [14, 6], a
technique recently introduced in the robotics literature, to predict the
future performance of each of the agent’s behavior generators at any
given time. In AAT, the agent tracks the veracity of the various as-
sumptions that a generator relies on, and in this way forms a veracity
vector. The resulting vector space forms a state space over which
AlegAATr can continually reason about the effectiveness of its gen-
erators. Accordingly, AlegAATr does not assume its world is station-
ary. Rather, it uses external information, encoded by the veracity vec-
tor, to inform its selection of generators based on the agent’s current
environment.

To investigate both the applicability and effectiveness of Ale-
gAATr, we implemented it in three separate problem domains: re-
peated games, ad hoc teamwork, and a human-robot pick-n-place
task. Our results illustrate that the performance of AlegAATr meets
or exceeds the state-of-the-art in each of these problem domains. In
addition to demonstrating the effectiveness of AlegAATr itself, these
results provide two additional contributions. First, they demonstrate
that AAT produces a state space that allows simple decision-making
rules, encoded in this case in AlegAATr, to produce effective choices
in various bandit settings. Second, these results also indicate that
AAT can be used effectively in a broader set of tasks and environ-
ments than those in which it was initially evaluated. Hence, it has
potential use in a wide variety of AI applications.

2 Assumption-Alignment Tracking

Before defining AlegAATr, we review Assumption-Alignment
Tracking (AAT) [14, 6], which AlegAATr uses to predict the per-
formance of a generator G at any given time. At each time step t,
the generator G takes as input an encoding of the state of the world,
denoted sGt , and outputs some action at for the agent to execute in
that time step. In producing the action at, we assume that G’s plan-
ner produces an estimate of the expected (or purported) performance
for running the generator, denoted UG(s

G
t ). For example, if the gen-

erator uses value iteration or reinforcement learning, the purported



performance is given by the value function (when taking action at in
state sGt ).

AAT is based on the idea that a generator is created under cer-
tain assumptions about the environment and the agent itself (e.g.,
its actuators and sensors). As such, the performance of the genera-
tor depends to a large degree on these assumptions being met. Thus,
to predict the future effectiveness of a generator, the agent must be
aware of the extent to which these assumptions are true. This can be
accomplished by continually tracking the veracity of the assumptions
upon which the generator relies, and then using these assessments to
correct predictions of a generator’s performance.

To track the veracity of the assumptions made in the construction
of generator G, veracity assessments, made both before and during
task execution, are calculated using alignment checkers. An align-
ment checker is a program that continually tracks the veracity of an
assumption. Note that there may actually be multiple checkers for a
single assumption (in fact, the implementations in the next sections
demonstrate this), but for the sake of simplicity we will assume there
is a bijection.

Formally, let Φ = {ϕ1, . . . , ϕM} denote the set of M assumptions
upon which the generator relies. Then, let xϕj

t ∈ [0, 1] be the assess-
ment, made by an alignment checker, of the veracity of assumption
ϕj at time t. If the assumption is evaluated to be true, then x

ϕj
t = 1;

otherwise, xϕj
t = 0. Real-valued assessments between 0 and 1 can

reflect uncertainty in the truth of the assumptions. Given the individ-
ual assessments of assumption veracity, let

xt = ⟨xϕ1
t , . . . , xϕM

t ⟩ (1)

denote the veracity assessment vector at time t.
The vector xt provides an encoding of world state, which stands in

contrast to sGt (the encoding of world state used by G). AAT uses xt

to predict the performance of generator G at time t by learning a cor-
rection term η(xt, s

G
t ) which encodes how violations in assumptions

impact the performance of G. Specifically, the AAT prediction of G’s
performance on the task at time t (denoted Û(xt, s

G
t )) is computed

as follows:
Û(xt, s

G
t ) = η(xt, s

G
t )U(sGt ). (2)

The correction term is learned by a model (of choice) using train-
ing data that contains both normal (assumptions are met) and abnor-
mal (assumptions are violated) instances. Each sample in the training
data encodes the generator’s current purported performance U(sGt ),
the veracity assessment vector xt, and the actual performance in the
training run. Once the learning process is complete, the model out-
puts the correction term η(xt, s

G
t ) for any condition (i.e, ⟨xt, s

G
t ⟩-

pair). The type of model is up to the designer; for the implemen-
tations described in this paper, we used kNN [11] (with k = 15
neighbors) and mixture models to learn the correction terms.

3 AlegAATr
While AAT evaluates the expected future performance of a single
generator, we consider the case in which an agent has N generators
at its disposal. Denote Γ = {G1, · · · , GN} as this set of genera-
tors. AlegAATr (Algorithm that evaluates generators via Assumption-
Alignment Tracking) uses the predictions of expected future perfor-
mance made by AAT (Eq. 2) to select which generator Gi ∈ Γ to use
at any given time.

Algorithm 1 gives an overview of AlegAATr. Step 1 specifies the
creation of generators available to the agent. The various generators
could provide different ways to perform the same task, or they could

Algorithm 1 AlegAATr
1: Create Γ, a set of N generators
2: Determine the set of assumptions, Φ, made in the creation of the

generators. For each ϕj ∈ Φ, create a checker
3: ∀Gi ∈ Γ, identify a metric for computing Ui(s

Gi
t )

4: ∀Gi ∈ Γ, train a model to compute η(xt, s
Gi
t )

5: for t = 1 to n do
6: ∀ϕj ∈ Φ, compute x

ϕj
t (Eq. 1)

7: For each Gi ∈ Γ, compute Ûi(xt, s
Gi
t ) (Eq. 2)

8: Select a generator G∗ ∈ Γ to follow (Eq. 3)
9: end for

each perform different sub-tasks of the task. Given the set of gener-
ators, Steps 2-4 specify the implementation of AAT for each gener-
ator as described in Section 2. The remaining steps of Algorithm 1
describe how AlegAATr selects generators at each time step t. First,
AlegAATr uses the assumption checkers to generate the veracity as-
sessment vector (Step 6). Then, based on this vector, AlegAATr pre-
dicts the performance of each generator Gi ∈ Γ (Step 7). Finally,
AlegAATr uses the predictions to determine which generator to se-
lect (Step 8).

In Step 8, AlegAATr selects the generator with the highest
expected utility to following during time step t. Formally, let
P̂i(xt, s

Gi
t ) be the expected future performance of generator Gi.

Then, AlegAATr determines G∗ as follows:

G∗ = arg max
Gi∈Γ

P̂i(xt, s
Gi
t ) (3)

We consider two different methods for estimating P̂i(xt, s
Gi
t ). In

the first method, P̂i(xt, s
Gi
t ) is based solely on the AAT prediction

(Eq. 2). That is:

P̂i(xt, s
Gi
t ) = Ûi(xt, s

Gi
t ). (4)

This approach is used under the assumption that AAT predictions are
adequate for deciding the effectiveness of a generator at any given
time. We call this method AAT selection.

However, because AAT predictions may not always be correct,
we also consider a second method for computing P̂i(xt, s

Gi
t ). This

method instead uses AAT predictions to guide exploration. In this
method (called AAT exploration), AlegAATr also tracks the (histori-
cal) empirical rewards obtained by each generator in the time periods
in which it is used. In general, it selects generators with the highest
empirical assessment. However, with some probability, it evaluates
generators with respect to AAT predictions.

Formally, let R̄Gi
t be the observed reward obtained when the agent

has used generator Gi in prior time periods. Then,

P̂i(xt, s
Gi
t ) =

{
R̄Gi

t with probability λni

Ûi(xt, s
Gi
t ) otherwise

(5)

where λ ∈ (0, 1), ni is the number of time steps since Gi was used
by AlegAATr (initially, ∀i, ni = ∞), and R̄Gi

1 = 0. The evolving
probability λni makes it so that the AAT prediction for a generator
is more likely to be considered if that generator has not been used
for a while, thus encouraging occasional use (exploration) of gener-
ators that have recently been neglected and are predicted by AAT to
perform well.

AlegAATr is intended to be general, such that it can be used in
many different domains. To study the flexibility and effectiveness
of AlegAATr, we conducted case studies in three distinct problem
domains: repeated games (Section 4), ad hoc teamwork (Section 5),
and a human-robot pick-n-place task (Section 6).



Table 1. Generators used in Implementation I for playing repeated games, the assumptions upon which each generator is based, and the number of checkers
used to evaluate the veracity of these assumptions. Details about each of the generators and checkers are given in Appendix A.1.

Generator Description Assumptions # Checkers
CFR Plays the agent’s portion of a one-shot Nash equilibrium 1. Associate plays a myopic best response to the agent’s strategy 3
Maxmin Plays the agent’s maximin strategy 1. Associate tries to make the agent’s payoffs as small as possible 2
Coop Plays the agent’s portion of the Nash Bargaining Solution 1. Associate wants to cooperate (insists on mutual cooperation) 4

2. Associate does not harm the agent if agent cooperates
Coop-Punish Plays the agent’s portion of the Nash Bargaining Solution as long 1. Associate is willing to cooperate 3

as associate also does so. Plays the attack strategy if associate 2. Punishing associate for defecting will cause associate to cooperate
benefits from deviating

Bullied Plays the agent’s portion of a Pareto optimal solution that most 1. Associate insists on the bully payoff 3
benefits the associate 2. Associate does not harm the agent if agent conforms

Bully-Punish Plays the agent’s portion of a Pareto optimal solution that most 1. Associate is willing to be bullied 4
benefits the agent as long as associate also does so. Plays the 2. Punishing associate for defecting will cause associate to cooperate
agent’s attack strategy if associate benefits from deviating

4 Case Study 1: Repeated Games
Over the last several decades, playing repeated games (RGs) has re-
mained a challenge problem for agent development (e.g., [5, 9]). RGs
are challenging because the environment is non-stationary as play-
ers adapt to each other. In addition to being theoretically interest-
ing, RGs model relevant scenarios, including wireless networks (e.g.,
[16]) and human-robot relationships (e.g., [19]).

In this paper, we consider general-sum two-player RGs. An RG
consists of a sequence of T rounds (where T may or may not be
known to the players). In each round, the players play a sequence of
joint actions until a terminal state is reached. The players then each
receive a payoff for that round dependent on the sequence of joint
actions played. The goal of each player is to select actions that lead
to the maximization of their payoffs over all rounds of the RG. In
this case, we consider that a player selects a generator at the start of
a round which dictates the agent’s actions throughout that round.

To better study AlegAATr, we analyze two different implemen-
tations within this domain. Due to space limitations, we only give
a high-level overview of both implementations in this section. Full
details are given in Appendix A.

4.1 Implementation I

In this implementation of AlegAATr for RGs, we seek to accurately
predict the performance of each generator. To do this, we carefully
evaluate each of the assumptions made in the creation of the genera-
tors available to the agent. We also provide the agent with extensive
training data.

4.1.1 Design Choices

Design choices for this implementation for each step of Algorithm 1
are as follows:
Steps 1-2: The agent is given the six generators summarized in Ta-
ble 1. Each of these generators computes strategies that are effective
given certain assumptions about the agent’s associate. For example,
CFR [18] assumes the associate is myopic and will try to maximize
its strategy in the current round. On the other hand, Coop-Punish, a
generalized tit-for-tat strategy, assumes the associate is less myopic
and willing to cooperate if it is in its best interest. Assumption check-
ers are detailed in the appendix.
Step 3: For CFR, U(sGi

t ) is the value to the agent of the com-
puted Nash equilibrium. For Maxmin, U(sGi

t ) is the agent’s maximin
value. For other generators, U(sGi

t ) is the expected payoff assigned
to the agent in the computed target solution.

Table 2. Payoff matrices for two matrix games.
(a) Prisoner’s Dilemma (b) Chicken

c d

C 60, 60 0, 100

D 100, 0 20, 20

a b

A 84, 84 33, 100

B 100, 33 0, 0

Step 4: AlegAATr was trained by simulating play of each generator
against three sets of hypothetical associates: (1) each of the six gen-
erators (Table 1), (2) a set of adaptive agents that reactively select
among the six generators in each round based on knowledge of the
generator being played by their associate, and (3) and an agent that
followed a (partially trained) version of AlegAATr. Given this data,
AlegAATr estimates η(xt, s

G
t ) using the mixture model described in

Appendix A.1.4.
Step 8: Uses AAT selection (Eqs. 3-4) to determine which generator
to follow in each round.

4.1.2 Experiments and Results

To begin to understand the strategies produced by this implementa-
tion of AlegAATr, we first consider several scenarios in a repeated
Prisoner’s Dilemma (Table 2a). Figure 1a shows the AAT predic-
tions made by AlegAATr for each of its six generators throughout a
20-round Prisoner’s Dilemma in self-play. Initially, AlegAATr esti-
mates that Coop-Punish will produce the highest per-round payoff,
so it selects this generator through the first six rounds of the game.
However, given that its associate is likewise cooperating, it begins to
predict higher payoffs for Bully-Punish. By round 6, it predicts that
Bully-Punish will produce higher payoffs than Coop-Punish, so Ale-
gAATr switches to that strategy in rounds 6 and 7, which causes it
to defect. However, when its associate retaliates in round 7, the pre-
dicted performance of some of its generators quickly change, such
that Coop-Punish again is predicted to be the best generator for the
remainder of the RG (Coop becomes a close second).

Alternatively, when paired with an associate that always defects
(CFR), AlegAATr’s performance predictions for each generator de-
crease over time (Figure 1b). Throughout the interaction, AlegAATR
selects either Coop-Punish or Bully-Punish, which causes it to pri-
marily defect, but to occasionally cooperate in hopes that its asso-
ciate will understand the hint and also start cooperating. In the third
scenario (Figure 1c), this indeed happens, as the associate switches
to Coop-Punish in round 11. When this happens, AlegAATr immedi-
ately predicts higher payoffs for Coop-Punish and Coop, which leads
to high degrees of cooperation.
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Figure 1. Predictions of per-round payoffs, or Û(x, s
Gi
t ), in the Prisoner’s Dilemma (above) and the Block Dilemma (below) when paired with self (left), a

stationary associate (middle), and an agent that suddenly switches its strategy from CFR to Bully-Punish (right).

Figures 1d-f show that AlegAATr achieves similar results in a re-
peated stochastic game called the Block Dilemma [19, 24] (alterna-
tively, see Appendix A.4). In this game, AlegAATr’s strategy encodes
optimism in uncertainty. That is, it selects Bully-Punish in round 1.
In self play, it quickly abandons this strategy and converges to mutual
cooperation (Figure 1d). However, when associating with Bullied, it
learns to continue to use this generator (Figure 1e). Finally, when
paired with a myopic associate (CFR), it learns within a few rounds
to play its portion of the one-shot Nash equilibrium by likewise play-
ing CFR (Figure 1f). However, when the associate switches in round
11 to Coop-Punish, AlegAATr immediately predicts higher payoffs
for Coop, leading it to likewise cooperate.

These results demonstrate that AlegAATr learns to (1) cooperate
with like-minded associates, (2) exploit associates that allow it to do
so, (3) play myopic best responses when necessary, and (4) quickly
adopt new strategies when its associate changes strategies. The abil-
ity of AlegAATr to learn these behaviors is intriguing, as produc-
ing algorithms with all of these characteristics has been challenging
(e.g., [12, 9]).

To further study the effectiveness of AlegAATr, we compare it
with other expert algorithms for RGs. We selected three baseline
comparisons: BBL, EEE [10], and S++ [8]. BBL and EEE pro-
vide comparisons to commonly used (greedy) utility-maximization
techniques. BBL, or belief-base learning (e.g., Fictitious Play [13]),
forms a probability distribution over the generators its associate
could be using and then selects the generator that maximizes its ex-
pected payoffs given those probability estimates. On the other hand,
EEE encodes an ε-greedy strategy based on the historical perfor-
mance of each generator. Finally, S++ provides a comparison to the
state-of-the-art in RGs, as its was the highest-performing algorithm
in a comparison of 25 different algorithms [9].

We paired each of the algorithms against itself and the other three
algorithms in three different 20-round RGs: the Block Dilemma, a
Prisoner’s Dilemma, and Chicken (Table 2). Figure 2 shows the nor-
malized per-round payoffs obtained by each of the four algorithms
across all pairings in each game. The results show that AlegAATr
performs as well as or better than the other algorithms in each game.
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Figure 2. Normalized payoffs when algorithms were paired with each
other in three different RGs. We conducted 60 trials for each pairing. Error

bars show the standard error of the mean.

Across the three games, AlegAATr obtained higher payoffs than EEE
(p < 0.001), BBL (p < 0.001), and S++ (p = 0.004).

4.2 Implementation II

In our second implementation of AlegAATr for RGs, we reduced
implementation effort and training (compared to implementation 1).
This results in a less careful evaluation of the generators, likely re-
sulting in less accurate predictions.

4.2.1 Design Choices

Design choices for this implementation for each step of Algorithm 1
are as follows:

Steps 1-2: The agent is given a similar set of generators as in Imple-
mentation I (Table 1), but with one additional generator. To reduce
implementation complexity, we used just six checkers (as opposed to
19) to evaluate assumptions. See Appendix A.2 for details.



Step 3: U(sGi
t ) was computed as in Implementation I.

Step 4: AlegAATr was trained against two kinds of associates. First,
each generator Gi ∈ Γ played against every other Gj ∈ Γ. Sec-
ond, we again trained on each generator Gi ∈ Γ, but randomly
changed the associate’s strategy to another Gj ∈ Γ after each round.
Given this data, AlegAATr estimates η(xt, s

G
t ) using a kNN algo-

rithm (k = 15).

Step 8: Uses AAT exploration (defined by Eqs. 3 and 5) to determine
which generator to follow in each round. To give the associate time
to adapt to AlegAATr’s strategy, we only considered switching gen-
erators every two rounds. Additionally, AlegAATr played Coop for
the first two rounds to signal to its associate that it was willing and
able to cooperate.

4.2.2 Experiments and Results

To evaluate the effectiveness of this implementation of AlegAATr,
we conducted a series of experiments in five RGs: Block Dilemma,
Chicken, Coordination, Matching Pennies, and Prisoner’s Dilemma
(see Appendix A.4 for details). Similar to Implementation I, we com-
pared the payoffs achieved by AlegAATr with those of BBL, EEE,
and S++ in 50-round interactions.

We first compared these algorithms when they are paired with four
different sets of associates: (1) Train: Associates that follow a sin-
gle generator Gi ∈ Γ (drawn from the same set of generators as
AlegAATr used) for the entirety of the RG; (2) Test: Other non-
learning algorithms that are not in Γ (these agents are described in
Appendix A.3); (3) Self-play; and (4) Learners: BBL, EEE, and S++.
For each game and agent pairing, we ran 500 simulations. Table 3
compares the normalized payoffs obtained by AlegAATr with those
of BBL, EEE, and S++ in each category. Across all five games, Ale-
gAATr outperforms the other algorithms in every category, though
it was not statistically superior to BBL against associates in the Test
category (p = 0.831).

Finally, we conducted a user study in which we paired the algo-
rithms with humans in the Block Dilemma. In this study, each par-
ticipant played eight 20-round games, two against each algorithm.
Participants were paid according to the payoffs they received in the
games. The ordering of the match-ups was randomized, such that par-
ticipants did not know the identify of their associates. To encourage
variation in playing styles, we biased participants in three different
ways: (1) No bias (13 participants): We gave no strategic sugges-
tions to participants; (2) Bully bias (10 participants): We suggested
to participants that they may make more money by bullying their
associate.; and (3) Coop bias (10 participants): We suggested to par-
ticipants that they may make more money by cooperating with their
associate.

Results of this study are summarized in Table 4. When paired with
people in the Block Dilemma, AlegAATr typically does at least as
well as the other algorithms (though it was only statistically bet-
ter than EEE). Combined with the superior scores when paired with
non-human associates, AlegAATr indeed seems to be a fairly robust
algorithm.

4.3 Discussion

Implementations I and II embody two different approaches. Imple-
mentation 1 used a more detailed set of checkers and a more thorough
training process. These checkers and training process take more time
to create, but lead to accurate AAT predictions that adapt quickly

Table 3. Differences between AlegAATr’s normalized rewards and those
of BBL, EEE, and S++ when paired with other agents. A positive difference

is in favor of AlegAATr. * indicates statistical significance from
Tukey-Kramer comparisons (p < 0.05).

BBL EEE S++

Train 0.02∗, p < 0.001 0.17∗, p < 0.001 0.20∗, p < 0.001

Test 0.00, p = 0.596 0.11∗, p < 0.001 0.09∗, p < 0.001

Self-play 0.21∗, p < 0.001 0.28∗, p < 0.001 0.14∗, p < 0.001

Learners 0.02∗, p < 0.001 0.02∗, p < 0.001 0.03∗, p < 0.001

Table 4. Differences between AlegAATr’s normalized rewards and those
of BBL, EEE, and S++ when paired with people in the Block Dilemma. A

positive difference is in favor of AlegAATr. * indicates statistical
significance from Tukey-Kramer comparisons (p < 0.05).

BBL EEE S++

No Bias 1.45, p = 0.846 4.92∗, p = 0.033 2.17, p = 0.615

Bully Bias 0.03, p = 0.999 4.79, p = 0.133 1.67, p = 0.869

Coop Bias −0.68, p = 0.981 5.24∗, p = 0.024 0.81, p = 0.969

Overall 0.41, p = 0.986 4.98∗, p < 0.01 1.62, p = 0.512

to changes in the associate’s strategy (Figure 1). On the other hand,
Implementation 2 used fewer checkers and a less thorough training
process. The subsequent predictions made by AAT in this implemen-
tation were not as accurate, but were still good enough to effectively
guide exploration. Interestingly, both implementations produce sim-
ilar results: they consistently perform as well as or better than the
baseline algorithms (BBL, EEE, and S++).

5 Case Study 2: Ad Hoc Teamwork
We next consider an ad hoc teamwork setting [22], in which an agent
must coordinate its behavior with unknown teammates. In particular,
we consider a predator-prey domain [3] where four predators work
together to capture a prey (by surrounding it on all four sides) in as
few moves as possible. AlegAATr selects generators to control one
of these agents.

5.1 Design Choices

Design choices for each step of Algorithm 1 are as follows:

Steps 1-2: We selected three algorithms for this domain from [3]:
Team Aware, Greedy, and Greedy Probabilistic. Results from Bar-
rett et al. showed that Team Aware had high performance, whereas
Greedy and Greedy Probabilistic had lower performance. We iden-
tified five assumptions upon which these generators are based, and
then created one checker for each of these assumptions.

Step 3: Purported performance U(sGi
t ) was determined as the aver-

age number of rounds required to surround the prey on a 5 × 5 grid
when all predators used the generator. For example, it takes 5.003
rounds (on average) for Team Aware predators to surround the prey
in a 5 x 5 grid.

Step 4: Training data was obtained in three training phases on 5× 5
and 10 × 10 grids. In phase one, we paired each generator Gi ∈ Γ
with three other predators that used the same generator. In phase two,
we paired each Gi ∈ Γ with three other predators that each used the
same randomly-selected Gj ∈ Γ. In phase three, we paired each
Gi ∈ Γ with three predators who each used their own generator
Gj ∈ Γ (randomly-selected). We produced 100 training runs for



Table 5. Differences between the (normalized) time to surround the prey
between AlegAATr and other top-performing algorithms. A negative

difference favors AlegAATr (fewer rounds to surround the prey is better).
p-values are from Tukey-Kramer comparisons.

Greedy Planner Min Sum Team Aware
Deterministic 0.01, p = 0.825 0.02, p = 0.363 0.00, p = 0.999

Non-Determ. 0.01, p = 0.999 0.01, p = 0.998 0.00, p = 0.999

Mixed 0.00, p = 0.999 0.02, p = 0.905 -0.01, p = 0.999

Overall 0.01, p = 0.918 0.01, p = 0.270 0.00, p = 0.999

0

100

200

300

400

0

40

80

120

160

M
ov

es
 to

 S
ur

ro
un

d 
Pr

ey

0

5

10

15

20

Figure 3. Moves to surround the prey with mixed teams on different grid
sizes. Note the change in scale of the y-axis across the three figures. Error

bars show the standard error.

each generator in each phase. AlegAATr estimated η(xt, s
G
t ) using

a kNN algorithm (k = 15).

Step 8: Uses AAT exploration (defined by Eqs. 3 and 5); a randomly-
selected generator is used in the first two rounds.

Implementation details are provided in Appendix B.

5.2 Experiments and Results

To evaluate AlegAATr’s ability to select a good generator given the
behavior of its teammates, we compare its performance with that
of seven other algorithms: Greedy, Greedy Planner, Team Aware,
Min Sum, Modeller, Greedy Probabilistic, and Probabilistic Desti-
nations. Details for each of these algorithms is given in Appendix B.
Tests were conducted on 5 × 5, 10 × 10, and 15 × 15 grids. On
each grid size, we paired each of the eight algorithms with three
teammates. These three teammates were constructed in three dif-
ferent ways: (1) Deterministic: Teammates all used the same de-
terministic (Greedy, Greedy Planner, Team Aware, or Min Sum)
strategy; (2) Non-Deterministic: Teammates all used the same non-
deterministic strategies (Greedy Probabilistic, Modeller, or Proba-
bilistic Destinations); (3) Mixed: Each teammate randomly used one
of the seven strategies.

Given that Team Aware, Greedy Planner, and Min Sum all perform
well in this domain [3], we were interested to determine whether
AlegAATr would coordinate with its teammates as well as these
high-performing algorithms. Comparisons over all grid sizes be-
tween AlegAATr and these high-performing algorithms are shown
in Table 5. The results (averaged over 30 trials in each condition)
show that there was little difference between AlegAATr and these
high-performing algorithms. Additionally, AlegAATr performed sta-
tistically better than the other four algorithms for every category of
teammate (p < 0.01 in all cases).

Figure 3 shows more detailed results for Mixed teams, or teams in
which AlegAATr’s teammates all used different (randomly selected)
behaviors. Ideally, AlegAATr should perform at least as well as its
best generator (Greedy, Team Aware, and Greedy Probabilistic). Ale-
gAATr takes a few more moves, on average, than if it had just always
followed Team Aware on 5× 5 grids, an outcome that could brought

Figure 4. A robot is tasked with arranging blocks on a table.

about by a single misstep. However, on the larger grid sizes, its per-
forms better on average (though error bars overlap) than if it had just
stuck with any one of its generators. This is true even on 15 × 15
grids in which it was not trained on. Overall, these results indicate
that AlegAATr is able to learn to effectively choose between its gen-
erators in this problem domain.

6 Case Study 3: Robot Pick-n-Place Task
In the third scenario, we consider a simulated robot, equipped with a
gripper, which is tasked with arranging blocks on a table (Figure 4) as
quickly as possible. A human bystander, who is potentially more ef-
ficient at performing the task, may also be available to (help) perform
the task. However, the robot does not know if the human bystander is
willing and able to do so. Thus, the robot must decide to do the task
itself or to ask the human bystander to do it.

6.1 Design Choices

Design choices for each step of Algorithm 1 are as follows:
Steps 1-2: The robot has six generators (Table 6). In Set Up Table, the
robot attempts to place the blocks in their correct locations. However,
this generator only fully succeeds when blocks are not too close to
each other (so it can grip them), are facing upward in the middle of
the table, and are reachable (the robot’s arm is not long enough for
it to reach all places on the table). Flip Blocks, Gather Blocks, and
Scatter Blocks are behavior generators available to the robot that are
designed to resolve these anomalies, though there are cases when
they fail. Alternatively, the robot has generators in which it either
asks a human bystander to resolve the anomalies (Request Help) or
to just set the blocks in the correct locations on the table (Request
Setup). The generators, assumptions, and checkers are detailed in
Appendix C.

In case studies 1 and 2, each generator was designed to perform the
full task. However, in this task, some of the available generators only
perform certain sub-tasks (e.g., resolve a particular anomaly). Thus,
to be successful in this case study, AlegAATr must (1) sequence its
generators to complete the task (e.g., scatter, flip, and gather blocks
before arranging them) while (2) deciding between multiple ways
of carrying out the task (robot manipulation vs. asking the human
bystander to do it).
Step 3: U(sGi

t ), determined empirically, is the amount of work done
(blocks placed or anomalies resolved) over 20 seconds.
Step 4: Each generator was trained in 16 random worlds as well as
five custom worlds. The responsiveness of the (simulated) bystander
was systematically varied in these training runs to be unresponsive



Table 6. Generators available to the robot.

Generator Description

Set Up Table Robot attempts to put blocks in the middle of the
table into place

Flip Blocks Robot attempts to flip overturned blocks that are in
the middle area of the table

Gather Blocks Robot attempts to move blocks to the middle

Scatter Blocks Robot attempts to separate blocks that are next to
each other

Request Help Robot asks bystander to resolve anomalies

Request Setup Robot asks human bystander to set up table

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 50 100 150

Mission Time (Seconds)

A
AT

 P
re

di
ct

io
ns

Generator

Flip Blocks

Gather Blocks

Request Help

Request Setup

Scatter Blocks

Set Up Table

Figure 5. Predictions of work done per unit time, or Û(xt, s
Gi
t ), for each

generator in a pick-n-place scenario.

(does not respond to any robot requests), fully responsive (does what-
ever the robot asks), or just helpful (solves anomalies when asked).
Additionally, in some training scenarios, the bystander was malicious
in that it moved blocks to hinder the robot’s progress. The speed at
which the human bystander acted was also varied. Given this data,
AlegAATr estimates η(xt, s

G
t ) using a mixture model, the details of

which are given in Appendix C.4.
Step 8: Uses AAT selection (Eqs. 3-4) to determine which generator
to use. AlegAATr made a new selection every five seconds.

6.2 Experiments and Results

Figure 5, which shows Û(xt, s
Gi
i ) for each generator over time in a

scenario with an unresponsive bystander, illustrates the strategy cho-
sen by AlegAATr. For the first 15 seconds, AlegAATr predicts that
the Request Setup generator will have the highest utility. Thus, it se-
lects this behavior, which lobbies the bystander to set up the table.
When the bystander does not respond to these requests, the utility of
using this generator decreases, such that the Request Help generator
is then predicted to have the highest utility. Thus, AlegAATr selects
this generator, which causes the robot to ask the bystander to correct
anomalies for the next 20 seconds. When the bystander still does not
respond, generators in which the robot manipulates the blocks itself
are estimated to have the highest predicted performance. These be-
haviors are subsequently selected and sequenced by AlegAATr in a
way that allows it to complete the task in just over 150 seconds.

To evaluate how well AlegAATr selects generators in this task, we
compared its performance with that of people. Specifically, we com-
pared how well AlegAATr and human participants selected genera-
tors in three different conditions, determined by the responsiveness
of the simulated human bystander. A fully responsive bystander ad-
hered to the requests of the robot (resolve anomalies or set up the
table), whereas a helpful bystander only resolved anomalies (upon
request). An unresponsive bystander did not respond to any request
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Figure 6. Time to complete the task when generators are selected by
AlegAATr and People given different human bystanders.

from the robot. The pace at which the human bystander acted was set
at a pace that was distinct from the training scenarios.

Twelve people participated in the study. These participants se-
lected generators by clicking buttons on a GUI (Figure 4). Each hu-
man participant performed the task under each of the three condi-
tions. The order the subjects experienced the conditions was coun-
terbalanced across participants. While strategies differed across hu-
man participants, participants were in general not inclined to have
the robot ask the bystander to do any work. In general, they tasked
the robot with setting up the blocks. This behavior stands in contrast
to the behavior learned by AlegAATr (illustrated in Figure 5).

The difference in strategy between AlegAATr and the typical hu-
man participant produced different performance profiles across the
three conditions of the study (Figure 6). Given an unresponsive by-
stander, AlegAATr took slightly longer on average to complete the
task than people (not statistically different; p = 0.436) since Ale-
gAATr spends the first 30 seconds or so asking the (unresponsive)
bystander for help (to no avail). However, when the bystander is re-
sponsive, this strategy produces better results. AlegAATr was, on av-
erage, faster than people when the bystander was helpful (not sta-
tistically significant; p = 0.251) or fully responsive (p < 0.001).
These results indicate that AlegAATr learned to both successfully
stitch together incomplete generators while also adapting to different
environmental conditions.

7 Conclusion

In this paper, we introduced a new bandit algorithm called AlegAATr.
AlegAATr leverages Assumption-Alignment Tracking (AAT), a
technique proposed in the robotics literature to perform proficiency
self-assessment [14, 6], to predict the performance of each of the N
behaviors that are available to it. It then uses these predictions to
select generators at any given time. To evaluate the effectiveness of
AlegAATr, we tested it in three distinct problem domains. Results
presented in this paper, when taken as a whole across all experiments
conducted in all three domains, show that AlegAATr selects gener-
ators as well as or better than baseline comparisons. These results
indicate that the veracity assessment vector encoded by AAT (and
used by AlegAATr) provides a robust and flexible encoding of state
that leads to effective decision-making in a variety of bandit settings.
Additionally, these results also indicate that AAT can be used effec-
tively in a broader set of tasks and environments than those in which
it was initially evaluated. Hence, we believe that it has potential use
in a wide variety of AI applications.
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A Two-Player Repeated Games – Additional
Details

In this section of the appendix, we give implementation details for
both implementations of AlegAATr for repeated games. In so doing,
we describe the generators, assumptions, and checkers used in the
studies. We also detail the training data that was gathered to train
both versions of the algorithm. After describing the implementations
of AlegAATr, we also describe details related to the experiments con-
ducted in this case study, including descriptions of the games used as
well as implementation details for other algorithms.

A.1 Implementation 1

Code for this first implementation can be found at https://github.com/
jakecrandall/AlegAATr_rg1.

A.1.1 Generators

We used a similar set of generators in each implementation. How-
ever, small differences exist between these implementations, so we
detail them each separately. The first implementation used six dis-
tinct generators:

1. CFR: Computes a Nash equilibrium using counterfactual regret
(CFR). The generator plays the agent’s strategy in that solution.
We used the algorithm in [7].

2. Maxmin: Compute the maximin strategy
3. Coop: Computes the Nash Bargaining Solution (NBS) by solving

a set of MDPs as defined in [4] and [3]. The agent selects the
strategy computed for the MDP that maximizes the product of the
agents’ advantages, as in [3]. The agent then plays its strategy in
the Nash Bargaining Solution.

4. Coop-Punish: Computes the Nash Bargaining Solution (NBS) by
solving a set of MDPs as defined in [4]. The agent selects the strat-
egy for the MDP that maximizes the product of the agents’ advan-
tages, as in [3]. The agent then plays its strategy in the Nash Bar-
gaining Solution as long as the associate plays its portion of the so-
lution. If the associate deviates from the strategy and thereby ben-
efits (receiving a higher payoff than it otherwise would have), the
agent plays its attack strategy, as defined by Littman and Stone [6]
and Crandall [3], until the associate has no longer benefited.

∗ Corresponding Author. Email: crandall@cs.byu.edu

5. Bullied: As in Coop, the agent solves a set of MDPs as defined
in [4] and [3]. Among the solutions that give both players higher
strategies than their maximin values, the agent selects the solution
that gives the highest payoff to the associate. The agent plays its
strategy corresponding to that solution.

6. Bully-Punish: As in Coop, the agent solves a set of MDPs as de-
fined in [4] and [3]. Among the solutions that give both players
higher strategies than their maximin values, the agent selects the
solution that gives the highest payoff to the agent. The agent plays
its strategy corresponding to that solution as long as the associate
plays its portion of that solution. If the associate deviates from the
strategy and thereby benefits (receiving a higher payoff than it oth-
erwise would have), the agent plays its attack strategy, as defined
by Littman and Stone [6] and Crandall [3], until the associate has
no longer benefited.

A.1.2 Alignment Checkers

As set of alignment checkers was constructed to continually evaluate
the veracity of each assumption listed in Table 1 of the main paper.
Additionally, a progress checker [2] was created for each generator.
We begin by defining each of the alignment checkers used for each
generator.

CFR: We used two alignment checkers for this generator to evaluate
whether the associate plays a myopic best response (which maxi-
mizes the associate’s round payoff given the strategy played by the
agent):

• The first of these checkers is initially set to 1, and then updated
after each round as follows:

xcfr_br1
t = 0.8xcfr_br1

t−1 + 0.2k,

where k = 1 if the associate played a bast response to the agent’s
strategy in that round and k = 0 otherwise.

• The second of these checkers is updated identically except that it
is only updated in rounds in which the agent uses CFR. Thus,

xcfr_br2
t =

{
0.8xcfr_br2

t−1 + 0.2k if agent used CFR
xcfr_br2
t−1 otherwise

Maxmin (mx): We used two checkers for this generator. The first
checker evaluates whether the associate plays the attack strategy. It



is initially set at 1, and then updated each round as follows:

xmx_harm
t =

{
0.8xmx_harm

t−1 + 0.2 if rt < rmm

0.8xmx_harm
t−1 otherwise

where rt is the round payoff obtained by the agent in round t and
rmm is its maximin value.

Coop (C): We used three alignment checkers to evaluate the assump-
tions made for this generator:

• The first checker evaluates whether the associate’s actions seem to
indicate that it wants to cooperate. Initially, this checker is set to
1, and then updates after each round as follows:

xc_wants
t =


0.2xc_wants

t−1 + 0.8 if nice
0.9xc_wants

t−1 + 0.1 if cooperated
0.8xc_wants

t−1 otherwise

where nice indicates that the associate played in a way that would
have boosted the agent’s payoffs while not benefiting themselves
(did worse than the value they would have gotten from mutual
cooperation), and cooperated indicates the associate otherwise
played the cooperative action.

• The second checker identifies whether the associate cooperates
when the agent plays Coop. It is initially set to 1, and then is up-
dated after each round that generator Coop is used, as follows:

xc_mirrors
t =

{
0.7xc_mirrors

t−1 + 0.3 if cooperated
0.7xc_mirrors

t−1 otherwise

When Coop is not used in a round, then xc_mirrors
t = xc_mirrors

t−1 .
• The third checker evaluates whether or not the associate exploits

the agent when it cooperates. It is initially set to 1, and then is
updated in each round that generator Coop is used, as follows:

xc_notexploit
t =

{
0.7xc_notexploit

t−1 if r−i
t > V̄ −i

0.8xc_notexploit
t−1 + 0.2 otherwise

where r−i
t is the associates payoff in round t and V̄ −i is the payoff

the associate should get when it cooperates in the round. When
Coop is not used in a round, then xc_notexploit

t = xc_notexploit
t−1 .

Coop-Punish (CP): We used two alignment checkers to evaluate the
two assumptions made in the construction of this generator:

• The first checker identifies whether the associate cooperates when
the agent plays Coop-Punish. It is initially set to 1, and then is
updated after each round that generator Coop-Punish is used, as
follows:

xcp_mirrors
t =

{
0.7xcp_mirrors

t−1 + 0.3 if cooperated
0.7xcp_mirrors

t−1 otherwise

When Coop-Punish is not used in a round, then xcp_mirrors
t =

xcp_mirrors
t−1 .

• The second checker evaluates whether punishment in a round
leads to the associate cooperating in the next round. It is initially
set to 1, and then each time the generator plays the attack strategy,
it updates based on whether the associate cooperates in the next
round. Thus, it updates as follows:

xcp_responds
t =

{
0.5xc_responds

t−1 + 0.5 if cooperated
0.5xc_responds

t−1 otherwise

If the agent did not punish in the current or previous round, then
xc_responds
t = xc_responds

t−1 .

Bullied (BD): We used to two alignment checkers to evaluate the
assumptions made in the design of this generator:

• The first checker evaluates whether the associate ensures that the
agent’s average payoff is less than or equal to what it would get
in the bullied payoff. Initially, this checker is set to one. Then, in
each round it is updated as follows:

xbd_insists
t =

{
0.8xbd_insists

t−1 + 0.2 if R̄t ≤ V̄bullied

0.8xbd_insists
t−1 otherwise

where V̄bullied is the average per-round payoff the agent gets in
this solution and R̄t is the average per-round payoff the agent has
received up to time t.

• The second checker evaluates the second assumption we have ar-
ticulated for this generator, which is that the associate will not
harm the agent if the agent conforms with the target solution. By
harm, we mean that the associate will not allow the agent to get a
payoff that meets or exceeds the payoff it would get in the bullied
target solution. Thus, to evaluate this assumption, this checker is
initially set at 1, and is then updated in each round that the Bullied
generator is used as follows:

xbd_notHarm
t =

{
0.8xbd_notHarm

t−1 + 0.2 if rt ≥ Vbd

0.7xbd_notHarm
t−1 otherwise

where Vbd is the payoff the agent should get in the round (in
the target solution). If Bullied is not followed in round t, then
xbd_notHarm
t = xbd_notHarm

t−1 .

Bully-Punish (B): We used three checkers to evaluate the assump-
tions identified for this generator.

• The first checker evaluates whether the associate is willing to be
bullied. To do this, the checker is initially set to 1. It is then up-
dated after each round as follows:

xB_willing1
t =

{
0.7xB_willing1

t−1 + 0.3 if cooperated
0.3xB_willing1

t−1 otherwise

where cooperated indicates that the associate played its portion of
the target solution.

• The second checker evaluates the same assumption. However, it
only updates in rounds in which the agent uses the Bully-Punish.
This checker is initially set to 1, and then is updated after each
round in which Bully-Punish is used as follows:

xB_willing2
t =

{
0.7xB_willing2

t−1 + 0.3 if cooperated
0.7xB_willing2

t−1 otherwise

When Bully-Punish is not used, then xB_willing2
t = xB_willing2

t−1 .
• The third checker evaluates whether punishment in a round leads

to the associate playing its portion of the target solution (i.e., co-
operating) in the next round. It is initially set to 1, and then each
time the generator plays the attack strategy, it updates based on
whether the associate cooperates in the next round. Thus, it up-
dates as follows:

xB_responds
t =

{
0.5xB_responds

t−1 + 0.5 if cooperated
0.5xB_responds

t−1 otherwise



If the agent did not punish in the current or previous round, then
xB_responds
t = xB_responds

t−1 .

Progress checkers: In addition to the alignment checkers we have
just defined, we also created progress checker [2] for each genera-
tor. Progress checkers are designed to determine the degree to which
the generator is getting the payoffs that the generator is expected to
receive. This checker is 0.5 if the generator always produces its ex-
pected payoff, less than 0.5 if it under-performance, and greater than
0.5 if it over-performs. Let R̄t be the average payoff obtained by the
agent in rounds in which used the given generator up to time t, and let
V̄ be the expected payoff the agent is expected to receive for playing
that generator (assuming assumptions hold). Furthermore, let Rmax

and Rmin be the highest and lowest possible round payoffs. Then,

xProgress
t =

{
0.5 + 0.5(R̄t−V̄ )

Rmax−V̄
if V̄ < R̄t

0.5(R̄t−Rmin)

V̄ −Rmin
otherwise

Note that xProgress
t = xProgress

t−1 if the generator is not used in round
t.

A.1.3 Training

In this implementation, we generated training data in each game for
each generator against the following three sets of associates (in or-
der):

1. Stationary associates: follow one of the six generators for the en-
tire repeated game.

2. Four different reactive associates that choose which generator to
use in each round based on knowledge of the generator being used
by their associate. Each reactive associate used one of the five
reactive rules:

• STATIONARY: Selects the generator that will produce the
best long-term payoff given (a) the generator currently used
by its associate and (b) the assumption that the associate will
not change which generator it uses based on the generator it
chooses. That is, if player i is playing generator G ∈ Γ, then
player −i selects:

G∗
−i = br−i(G) = argmax

g∈Γ
M−i(G, g),

where M−i(G, g) is the long-term payoff to player −i when
player i uses generator G and player = i uses generator g.

• CORNOT: Selects the generator that will produce the best long-
term payoff given (a) the generator currently used by its as-
sociate and (b) the assumption that the associate will in turn
change which generator it uses based on its long-term payoff.
That is, if player i is playing generator G ∈ Γ, then player −i
selects:

G∗
−i = argmax

g∈Γ
M−i(bri(g), g).

• FAIR: Selects the generator that will produce the best long-term
payoff given (a) the generator currently used by its associate
and (b) the assumption that the associate will then switch to
play CFR if its payoffs become lower than what it would get in
the one-shot Nash equilibrium.

• STACKELBERG: Computes a Stackelberg equilibrium that
most favors itself.

These associates run these generator selection algorithms with
probability 0.4 in each round (thus, with probability 0.6 they keep
the same strategy).

3. A partially trained version of AlegAATr (trained to the same level
as the agent)

For each generator Gi ∈ Γ, 60 training trials were conducted
against each kind of associate (10 with each starting generator), thus
producing a total of 360 training runs for each generator in each re-
peated game. Initially, a random generator was selected to start a
training run. After τ rounds, the agent switched to generator Gi. For
the ten trials, τ = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}.

A.1.4 AAT Predictions

AAT predictions are made using a mixture model, in which each
training sample is given a weight. Let DG be the set of training sam-
ples for generator G ∈ Γ. Then, let x(d) be the veracity assessment
vector for some sample d ∈ DG and let dt be the time step in the
training run in which sample d was taken. Let xt be the current ve-
racity assessment vector. Then the distance between data sample d
and the current veracity assessment vector is given by:

dist(xt,x(d)) = 0.2 ∗ |t− dt|+
∑
ϕ∈Φ

mG(ϕ) ∗ |xϕ
t − x(d)ϕ|

where mG(ϕ) = 1 if ϕ is a checker associated with generator G
and mG(ϕ) = 0.25 otherwise. The assumption here is that checkers
that are not associated with a generator might carry some kind of
information.

The weight of sample d in the mixture model, denoted wd, is given
by

wd =
1

1 + (dist(xt,x(d)))
5

A.2 Implementation II

Code for our second implementation can be found at https://github.
com/ethanp55/alegaatr_rg_v2.

A.2.1 Generators

We used the following seven generators in this implementation. Note
that, in addition to having one additional generator, these generators
behaved slightly differently than those used in Implementation I.

• Coop: This agent plays the “efficient cooperation” strategy, which
typically results in the highest combined reward for both play-
ers (as long as both consistently play this strategy). We used the
FolkEgal algorithm [4] with weights of 0.5 for both players.

• Coop-Punish: This agent plays the same strategy as the Efficient
Cooperation agent, but punishes/attacks the associate whenever
they deviate to a different strategy. We used the same FolkEgal
weighting mechanism as Efficient Cooperation and used the at-
tack strategy learned from the Minimax agent (listed below) for
punishments.

• Bully: This agent attempts to achieve the highest possible reward
for itself. For example, in a typical Prisoners’ Dilemma encounter,
this agent would always defect. We used the FolkEgal algorithm
with weights of 1.0 and 0.0 for the Bully agent and the associate,
respectively.



• Bully-Punishment: This agent plays the same strategy as the Bully
agent, but punishes/attacks the associate whenever it is unable to
achieve the highest possible reward. We used the same FolkEgal
weighting mechanism as Bully and again used the attack strategy
learned from the Minimax agent.

• Bullied: This agent attempts to maximize its reward while allow-
ing the associate to be a “bully”/play the Bully strategy. We used
the FolkEgal algorithm with weights of 0.2 and 0.8 for the Bullied
agent and the associate, respectively.

• Maxmin: This agent plays the minimax strategy; this is also
known as trying to maximize one’s reward under the assumption
that the worst-case scenario will occur. We used the minimax-Q
algorithm [5] to choose actions.

• Counterfactual Regret (CFR): This is a well-known agent that at-
tempts to minimize what is known as “counterfactual regret”. We
used the algorithm in [7].

A.2.2 Alignment Checkers

Table 1. Generators and assumptions used in Implementation II for
repeated games.

Generators Assumptions
Coop Vengeful
Coop-Punish Fair
Bully Bully
Bully-Punish Pushover
Bullied Understands
Maxmin Efficient
CFR

Across the seven generators, we identified the six assumptions
listed in Table 1. We then created a single checker for each assump-
tion. These checkers are defined as follows. We used an exponential
moving average (with length 5) to smooth these evaluations.

• Efficient Assumption: This assumption is used to determine
whether or not the opponent is trying to cooperate. It is calculated
as

E = loglikelihood(ri−1, kde(sim(γi−1, EC))

where sim is a function that takes a copy of the agent we played
in the previous round (γi−1) and a copy of our Efficient Co-
operation agent (EC) and records the rewards of a simulation
of 30 rounds with those two policies playing each other. We
then fit a kernel density estimate on those 30 simulated rewards
(kde(sim(γi−1, EC))), and calculate the log likelihood that the
reward we received in the previous round (ri−1) belongs to the
fitted distribution. For our implementation we used scikit-learn’s
KernelDensity module (version 1.0.2). For more information on
scikit-learn’s kde functionality, visit their website at https://scikit-
learn.org/stable/modules/density.html.

• Vengeful Assumption: This assumption is used to determine
whether or not the opponent tends to punish. It is calculated as

V = loglikelihood(ri−1, kde(sim(γi−1, A))

where sim is a function that takes a copy of the agent we played
in the previous round (γi−1) and a copy the attack policy of
our Minimax agent (A) and records the rewards of a simula-
tion of 30 rounds with those two policies playing each other. We
then fit a kernel density estimate on those 30 simulated rewards

(kde(sim(γi−1, A))), and calculate the log likelihood that the re-
ward we received in the previous round (ri−1) belongs to the fitted
distribution.

• Fair Assumption: This assumption is used to determine whether
the opponent’s rewards are similar to those of AlegAATr. It is cal-
culated as

F =
AR1

AR2

where AR1 is AlegAATr’s average reward from the previous Π
rounds (which we set to 5) and AR2 is the opponent’s average
reward from the previous Π rounds.

• Bully Assumption: This assumption is used to see if our opponent
tends to be a bully. It is calculated as

B = loglikelihood(ri−1, kde(sim(γi−1, BLY ))

where sim is a function that takes a copy of the agent we played in
the previous round (γi−1) and a copy of our Bully agent (BLY )
and records the rewards of a simulation of 30 rounds with those
two policies playing each other. We then fit a kernel density es-
timate on those 30 simulated rewards (kde(sim(γi−1, BLY ))),
and calculate the log likelihood that the reward we received in the
previous round (ri−1) belongs to the fitted distribution.

• Pushover Assumption: The idea behind this assumption is to
check whether our opponent is a pushover and therefore can be
easily bullied. It is calculated as

P = loglikelihood(ri−1, kde(sim(γi−1, BLD))

where sim is a function that takes a copy of the agent we played in
the previous round (γi−1) and a copy of our Bullied agent (BLD)
and records the rewards of a simulation of 30 rounds with those
two policies playing each other. We then fit a kernel density es-
timate on those 30 simulated rewards (kde(sim(γi−1, BLD))),
and calculate the log likelihood that the reward we received in the
previous round (ri−1) belongs to the fitted distribution.

• Understands Me Assumption: The final assumption, denoted as
U , we use is meant to check if the opponent seems to be play-
ing a best response to the expert AlegAATr is currently playing.
Accordingly, the calculation depends on the current expert in use,
and is calculated as follows:

– If the expert AlegAATr played in the previous round was the
Bully Punish agent, U = P where P is the pushover assump-
tion estimate we recently calculated.

– If the expert AlegAATr played in the previous round was the
Bully agent, U = V where V is the vengeful assumption esti-
mate we recently calculated.

– If the expert AlegAATr played in the previous round was either
the Bullied, Minimax, or Efficient Cooperation agent, U = B
where B is the bully assumption estimate we recently calcu-
lated.

– If the expert AlegAATr played in the previous round was the
Efficient Cooperation Punish agent, U = E where E is the
efficient assumption estimate we recently calculated.

– If the expert AlegAATr played in the previous round was the
CFR agent, we simply calculate the assumption as U = 0.

A.3 Testing

Here are descriptions of the agents listed in the Test category in the
evaluation of Implementation II:



• Random: This agent simply chooses an action at random during
each round of play.

• Greedy Negative: This agent use the Bully strategy as long as its
total/cumulative reward is positive; otherwise, it plays the Effi-
cient Cooperation strategy.

• Coop Greedy: This agent primarily plays the Efficient Coopera-
tion strategy, but with probability p (we used a value of 0.25) it
will play the Bully strategy for a single round.

• Round Number: This agent plays Efficient Cooperation for the
first half of n rounds; for the remaining half, it uses the Bully
strategy. Because we used 50 rounds in our experiments for Im-
plementation II, this agent cooperates for the first 25 rounds and
then bullies in the remaining 25 rounds.

A.4 Games used in the experiments

Finally, these are the games we used in our experiments:

• Block Dilemma: The Block Game is a two-player, extensive-form,
repeated game [8]. The players are presented with a set of blocks,
depicted in Figure 1a, and take turns making a selection until both
possess three blocks. The players then either receive a positive
or negative payoff in terms of cents (USD currency). In order to
receive a positive reward, one of the following three conditions
must be satisfied:

– All of the blocks are the same shape.

– All of the blocks are the same color.

– Each block has a unique shape and color (called a “mixed set”).

For a detailed analysis of the Block Dilemma, see [8].
• Chicken Game: A classic example of the chicken game is where

two cars are heading straight for each other. The cars can either
swerve (action A), or continue going straight (action B). If one
swerves while the other goes straight, the “glory” goes to the car
that continued on its course while the car that swerved is shamed
for not toughing it out. If both cars continue straight, they collide
and incur serious damage. If both swerve, nothing happens. The
payoff matrix used for Implementation I is given in Table 2b. The
payoff matrix we used for Implementation II was the following:

[ht]

Player 2
A B

Player 1 A (0, 0) (−1, 3)
B (3,−1) (−5,−5)

Note that the Efficient Cooperation strategy for this version of the
game is to alternate between swerving and going straight, for an
average reward of 1 per round for each player.

• Coordination Game: This game simply requires the two players to
be in sync. Both receive equal rewards regardless of what happens,
but receive a higher reward if they choose the same action. The
payoff matrix we used was the following:

[ht]

Player 2
A B

Player 1 A (2, 2) (0, 0)
B (0, 0) (2, 2)

• Matching Pennies: This game typically involves players choosing
a side of a penny. Each player then flips a single penny and ob-
serves the outcome. Player 1 receives a positive reward if both
pennies have the same side (heads and heads or tails and tails),

whereas player 2 receives a positive reward if the two pennies have
different sides. This is the payoff matrix we used:

[ht]

Player 2
A B

Player 1 A (1,−1) (−1, 1)
B (−1, 1) (1,−1)

• Prisoners’ Dilemma: The Prisoners’ Dilemma is a well-known
game in the field. A classic scenario is one where there are two
prisoners being interrogated in different rooms. If one prisoner re-
veals incriminating information against the other (action B), they
are immediately released while the other is served with a long in-
carceration period. If both reveal information against each other,
both remain in prison but for a shorter amount of time due to their
cooperation with the police. If both do not reveal information (ac-
tion A), they are held for a very short period before being released
because the police cannot hold them indefinitely without any ev-
idence. The payoff matrix used for Implementation I is given in
Table 2a. The payoff matrix we used for Implementation II was
the following:

[ht]

Player 2
A B

Player 1 A (3, 3) (−3, 5)
B (5,−3) (−1,−1)

B Ad Hoc Teamwork – Additional Details

Code for our implementation can be found at https://github.com/
ethanp55/predator_prey.

Table 2. Generators and their corresponding assumptions used in the
predator-prey case study.

Generators Assumptions
Greedy Greedy
Team Aware Planner
Greedy Probabilistic Collective Distance

Moving Closer
Collisions

B.1 Generators

Table 2 overviews the generators (and the assumptions on which they
are based) that were used in this study. These generators, described
in prior work [1], can be described as follows:

• Greedy: This agent simply chooses the nearest position neighbor-
ing the prey as its goal.

• Team Aware: This agent assigns destinations to each member on
the team. For its own goal/destination, it uses A∗ to plan a path
while treating the other agents as static obstacles.

• Greedy Probabilistic: Similar to the greedy algorithm, this agent
chooses the nearest position neighboring the prey as its goal.
However, it uses a probabilistic model to choose the dimension
(left/right vs. up/down) to travel in first.

We implemented these predators as specified in [1].



15

5

0 10 60

65

75

15

25
Player 1’s Blocks $ Player 2’s Blocks $ Outcome Label

#1 2.00 0.50 Player 1 Bullies

#2 -0.36 -0.19 Fight

#3 0.90 0.90 Aloof Cooperation

#4 0.90 -0.42 Player 1 Dominates

#5 1.25 1.25 Efficient Cooperation

!   !     !

!    !    !

Alternate between  

!  !  !   and  !  !  !

!    !    !

!   !   !

�    �    �

!    !    !

Alternate between  

!  !  !   and  !  !  !

!    !    !

!    !    !

(a) (b)

Figure 1. The Block Dilemma and a few different outcomes. (a) Each round, players take turns selecting one of the nine blocks until both have obtained three
blocks. (b) A few examples of block selections for both players and what their reward/payoff is. Figure adapted from [Whiting et al., 2021].

B.2 Alignment Checkers

We create one checker for each of the assumptions identified in Ta-
ble 2. These checkers tracked the veracity of the corresponding as-
sumptions as follows:

• Greedy: This assumption is used to determine if the other preda-
tors are playing greedily. It is calculated as

G =

∑
predi∈ρ

∑30
k=1 sim(predi, pos

τ−1
i , posτi , Greedy)∑

predi∈ρ

∑30
k=1 k

where ρ is the set of all predators on the team excluding Ale-
gAATr, predi is the ith predator in ρ, posτ−1

i is the previous
position of predator i, posτi is the current position of predator
i, Greedy is a copy of the Greedy agent/predator, and sim is a
function that passes posτ−1

i to Greedy, compares the output with
posτi , and returns 1.0 for a match, 0.5 if posτ−1

i = posτi (the
predator did not move, so they might be blocked or already be
neighboring the prey), and 0.0 otherwise.

• Planner: This assumption is used to determine if the other preda-
tors are using path planning to guide their decisions. Similar to the
Greedy assumption, it is calcualted as

P =

∑
predi∈ρ

∑30
k=1 sim(predi, pos

τ−1
i , posτi , T eamAware)∑

predi∈ρ

∑30
k=1 k

where ρ is the set of all predators on the team excluding Ale-
gAATr, predi is the ith predator in ρ, posτ−1

i is the previous
position of predator i, posτi is the current position of predator
i, TeamAware is a copy of the Team Aware agent/predator,
and sim is a function that passes posτ−1

i to TeamAware, com-
pares the output with posτi , and returns 1.0 for a match, 0.5 if
posτ−1

i = posτi (the predator did not move, so they might be
blocked or already be neighboring the prey), and 0.0 otherwise.

• Collective distance: This assumption is used to gauge how far the
team of predators is from the prey and is calculated as

CD =

∑
predi∈ρ minDist(posτi , pos

τ
prey)

wh

where ρ is the set of all predators on the team including AlegAATr,
predi is the ith predator in ρ, posτi is the current position of preda-
tor i, posτprey is the current position of the prey, minDist is a
function that returns the distance between posτi and the closest
position neighboring the prey, w is the width of the grid, and h is
the height.

• Moving closer: This assumption is used to determine if the team of
predators is collectively moving closer to the prey. It is calculated
as

M =
CDτ

CDτ−1

where CDτ is the collective distance at the current round τ and
CDτ−1 is the collective distance at the previous round τ − 1.

• Collisions: The final assumption is used to estimate whether any
collisions have occurred. It is calculated as

C =
∑

predi∈ρ

colEstimate(posτ−1
i , posτi )

where ρ is the set of all predators on the team including Ale-
gAATr, predi is the ith predator in ρ, posτ−1

i is the previous po-
sition of predator i, posτi is the current position of predator i, and
colEstimate is a function that returns 1.0 if posτ−1

i = posτi and
posτi does not neighbor the prey, 0.0 otherwise.

B.3 Other Algorithms used in Experiments

Descriptions of other algorithms used in experiments (for testing pur-
poses):

• Greedy Planner: This agent is almost identical to Team Aware, but
rather than assign destinations to each predator, it simply chooses
the nearest position neighboring the prey as its goal.

• Min Sum: This agent assigns destinations/goals to each predator,
but does so in a way that minimizes the cumulative distance to the
prey. It then chooses the action that minimizes the distance to its
own goal.

• Modeller: This predator uses the same approach as Min Sum when
choosing a destination, but it attempts to predict its teammates’
moves for the next round in order to avoid collisions. To do so, it
maintains a simple decision tree classifier (using scikit-learn’s de-
fault implementation) for each teammate. After each round, it ob-
serves the positions of the other predators and where they moved,
and updates its models accordingly.

• Probabilistic Destinations: This agent attempts to tighten a circle
around the prey as well as avoid collisions with other predators.
Similar to Greedy Probabilistic, it uses a probabilistic model to
choose a distance from the prey as its goal. It then uses another
probabilistic mechanism to choose a destination at the selected
distance.

Both Min Sum and Probabilistic Destinations were implemented as
specified in [1].



B.4 AAT Predictions

For our implementation in this domain, we used a nearly identical
structure as our second version of repeated games specified in Sec-
tion 4.2 of the main paper. The only difference is found in the time
stamps we used when constructing assessment vectors. Instead of us-
ing τ as the current time step/round, we used a ratio of the distance
to the prey, calculated as d

wh
. Here d is the number of steps to the

nearest position neighboring the prey, w is the width of the grid, and
h is the height of the grid.

C Robot Pick-n-Place Task – Additional Details
In this section, we provide details related to the generators available
to AlegAATr to use in the third scenario of the paper, in which a robot
seeks to arrange (potentially with the help of a human bystander)
blocks on a table in the configuration shown in Figure 2. The simula-
tor allows the blocks to be placed in any position on or off the table.
Additionally, the blocks can be flipped over (so the shape and color
on the block is not visible). Furthermore, the robot arm cannot reach
blocks that are in the far corners.

Figure 2. Target block positions (goal state) for the third scenario.

We describe the six generators available to the robot, the assump-
tions these generators rely on to be successful, and the checkers used
to evaluate the veracity of these assumptions.

C.1 Generators

The six generators available to the robot to perform this task are
overviewed in Table 6 (main paper). Here, we provide additional de-
tails about how each of these generators function.

• Set Up Table: This generator attempts to place all blocks into their
target positions (Figure 2) that are in the center portion of the ta-
ble (defined by the dotted grey box in the figure). The genera-
tor includes an algorithm for locating the positions of all blocks
present in the center portion of the table. It then iteratively moves
the blocks to their target locations. If a block’s target position (or a
nearby location) are occupied by another block, it skips that block
initially (and then comes back to it). If there are no blocks that
can be placed due to their target positions being occupied by other
blocks, the generator moves the interfering block to an open space
on the table before proceeding to iteratively place the blocks.
The generator does not consider that blocks may be ungrippable
(another block is nearby which keeps the gripper from being able

to grasp the block). In such cases, the robot will continually at-
tempt to pick up the block. It also ignores all blocks that are flipped
over, out of reach, off the table, and/or not in the center of the ta-
ble.

• Flip Blocks: The robot attempts to flip (make upright) all blocks
that are in the center portion of the table. The generator first identi-
fies a block that is flipped over, then picks up that block and moves
it to a position in the center portion of the table. It then drops the
block. The physics of the simulated world is such that the block
will land upright with 50% probability. Additionally, its landing
position is randomly selected (uniformly) within a radius of the
drop point (in both the x and y directions.

• Gather Blocks: The robot attempts to move all blocks that are not
in the center portion of the table into the center portion of the table
(one-by-one). The generator does not consider that blocks may
be ungrippable (another block is nearby which keeps the gripper
from being able to grasp the block). In such cases, the robot will
continually attempt to pick up the block. It also ignores all blocks
that are out of reach or off the table.

• Scatter Blocks: If a block has another block directly to its right
or left, the robot is not able to grasp it with its gripper. How-
ever, it can push the block by closing its gripper and then scoot-
ing the block in any direction (if the block its scoots runs into
other blocks, those blocks also move). Thus, this generator scoots
blocks in this fashion (either up or down on the table, depending
on how close it is to each edge) that have blocks to either side of
them. To do this, the generator selects a block on the table that has
another block next to it. If there are grippable blocks within a cer-
tain radius of that block, it moves those blocks to open spaces on
the table. It then pushes the selected (ungrippable) block either up
or down (away from edges of the table if possible) in an attempt
to free it. The robot continues this process until all blocks within
reach and on the table are grippable.

• Request Help: The robot voices messages asking for help resolv-
ing anomalies on the table. Anomalies include blocks that are off
the table, out of reach on the table, ungrippable blocks, blocks that
are flipped over, and blocks that are not in the center of the table.
In the simulator, the robot’s messages are displayed at the bottom
of the GUI. Table 3 shows the speech messages the robot voices
for each anomaly. The robot says a new message every five sec-
onds. If there are multiple anomalies, the robot voices the message
corresponding to the anomaly that is listed higher in the table.

• Request Setup: The robot voices messages to try to get a human
bystander to set up the table. The robot voices a new message
every five seconds. The message it selects depends on whether
it observes that the human bystander is currently setting up the
table, is moving blocks out of position, or otherwise not making
progress. For each of these scenarios, the robot randomly selects
a message from the messages listed in Table 4.

C.2 Assumptions

The success of each of the six generators is contingent on certain as-
sumptions, which were made by the system designers, being true.
The assumptions that were identified by the system designers are
shown in Table 5.

C.3 Alignment Checkers

Checkers were created to evaluate the veracity of the assumptions.
We note that because some assumptions are difficult to check di-



Table 3. Speech produced by the robot when using the Request Help generator for each anomaly. If multiple anomalies exist, the robot selects speech
corresponding to the anomaly that is highest up in this table.

Anomaly Speech produced by the robot
Block out of reach I can’t reach very far. Could you move the blocks that are farthest from me a bit closer?
Block not on table I can’t see all the blocks. Please ensure they are all on the table.
Block not grippable Please spread out the blocks so I can pick them up easier.
Flipped block Can you make it so that all blocks are facing up?
Block not in center Please put all of the blocks in the middle of the table.

Table 4. Speech produced by the robot when using the Request Setup generator. If the human bystander is observed to be setting up the table, the robot
randomly selects a message in the first column. If the human bystander is observed to be moving blocks in a way that hinders progress, the robot randomly

selects a message in the second column. Finally, if the human bystander is observed to not be doing anything, the robot randomly selects a message from the
third column.

Human helping Human acting maliciously Human not reacting
Thank you. You’re working against us. Please set up the table. You can do it faster
Getting closer. You are soooooo funny. than me.
Nice! Not funny. Come on, just set it up already.
Excellent. Hah hah hah. Don’t be sus. Set it up!
You are doing a great labor Very creative. Not! You’re like the other Could you set the table up for us, please?
Thanks for helping me out with this. 50 humans I’ve met. The faster you set this thing up, the faster we’ll
Just a bit more. You can keep laughing to yourself, but it be done.

isn’t funny. I’m pretty slow at this. Could you set the table up?

rectly and perfectly, some checkers indirectly evaluate multiple as-
sumptions. Checkers return 1 if the assumption is determined to be
true and 0 if it is false. Intermediate values indicate, loosely, degrees
of truth. The checkers are updated every second.

We list and define the set of checkers used to evaluate each gen-
erator in turn. As done with AAT [2], these checkers include both
alignment checkers (which evaluate the veracity of the assumptions)
and progress checkers (which evaluate the overall progress made by
the generator). All assumptions are initially assumed to be true, so
all checkers are initially set to 1.0.

Set Up Table (ST): We used seven checkers to evaluate this generator:

1. Determine that there are blocks in the center of the table that still
need to be placed in their appropriate positions:

xST_Unplaced
t =

{
1 if Kt > 1

0 otherwise

where Kt is the number of grippable blocks that are (1) in the cen-
ter area of the table, (2) are grippable, and (3) are facing upward
at time t.

2. Determine that all blocks are in the center are of the table:

xST_Middle
t =

{
1 if Mt = 9
Mt
16

otherwise

where Mt is the number of blocks in the middle of the table at
time t.

3. Determine that blocks are grippable (only updates if the robot’s
gaze is on the center of the table):

xST_Grip
t =


1 if ¬Gt = 0

Gt
2(Gt+¬Gt)

else if Gt > 0 and ¬G > 0

0 otherwise

where Gt and ¬Gt are the number of blocks that are grippable and
ungrippable, respectively, at time t.

4. Determine that all blocks are reachable (only updates if the robot’s

gaze is on the center of the table):

xST_Reach
t =


1 if ¬Rt = 0

Rt
2(Rt+¬Rt)

else if Rt > 0 and ¬R > 0

0 otherwise

where Rt and ¬Rt are the number of blocks that are reachable
and unreachable, respectively, at time t.

5. Determine that all blocks are facing up (only updates if the robot’s
gaze is on the center of the table):

xST_Up
t =


1 if ¬Ft = 0

Ft
2(Ft+¬Rt)

else if Ft > 0 and ¬F > 0

0 otherwise

where Ft and ¬Ft are the number of blocks that are facing up and
not facing up, respectively, at time t.

6. Determine that the human bystander is not moving blocks in a way
that thwarts the robot’s progress:

xNotBad
t =


1 if Et = 0

0.5 else if Ht = 0
(Ht−Et)/Ht

(Et+10)/10
otherwise

(1)

where Ht is the number of blocks the robot has determined the
human has put their correct locations plus the number of anoma-
lies the human has resolved up to time t, and Et is the number
of blocks the robot has determined the human has moved out of
their target location plus the number of anomalies the human has
caused up to time t.

7. (Progress checker) Determine the progress the robot has made so
far when using this generator up to time t:

xST_Progress
t =

8Pt

T ST
t

,

where Pt is the number of blocks the robot has placed when using
generator Set Up Table so far and T ST

t is the amount of time (in
seconds) that the robot has used this generator so far.



Table 5. Assumptions identified in the creation of the six generators used by the robot in the Human-Robot Role Allocation scenario.

Set Up Table Flip Blocks Gather Blocks Scatter Blocks Request Help Request Setup
- The blocks do not move if the
robot does not move them

- The blocks do not move if the
robot does not move them

- The blocks do not move if the robot
does not move them

- The blocks do not move if the
robot does not move them

- Human bystander hears and under-
stands the requests

- Human bystander hears and under-
stands the requests

- The blocks are in the middle of the
table

- There are blocks to flip in the mid-
dle of the table

- There are out-of-view blocks - There are ungrippable blocks - Human bystander is willing to
help (not malicious)

- Human bystander is willing to
help (not malicious)

- The blocks are reachable - Flipped blocks are reachable - Out-of-view blocks are reachable - Ungrippable blocks are reachable - Human bystander knows how to
help

- Human bystander knows desired
configuration of blocks

- The blocks are not too close to-
gether for the robot to grip

- The blocks are not too close to-
gether for the robot to grip

- Out-of-view blocks are not too close
together for the robot to grip

- Ungrippable blocks are not
pressed together too close to the
limits of the robot’s reach

- The blocks are facing up

Flip Blocks (FB): We used six checkers to evaluate this generator:

1. Determine that there are blocks that need to be flipped over:

xFB_Flipped
t =

{
1 if Ft > 1

0 otherwise

where Ft is the number of flipped blocks.
2. Determine that the next flipped block the robot will try to flip is

reachable:

xFB_Reachable
t =


1 if Frt = Ft

0.5 else if Frt > 0

0 otherwise

where Frt is the number of flipped blocks that are reachable.
3. Determine that the next flipped block the robot will try to flip is

grippable:

xFB_Grippable
t =


1 if Fgt = Ft

0.5 else if Fgt > 0

0 otherwise

where Fgt is the number of flipped blocks that are grippable.
4. Determine that the flipped blocks are in the center of the table:

xFB_Middle
t =


1 if Fmt = Ft

0.5 else if Fmt > 0

0 otherwise

where Fmt is the number of flipped blocks that are in the center
area of the table.

5. Determine that the human bystander is not moving blocks in a way
that thwarts the robot’s progress: xNotBad

t (Eq. 1).
6. (Progress checker) Determine the progress the robot has made so

far in flipping blocks when using this generator up to time t:

xFB_Progress
t =

8 · Flippedt

TFB
t

,

where Flippedt is the number of blocks the robot has flipped
when using generator Flip Blocks so far and TFB

t is the amount
of time (in seconds) that the robot has used this generator so far.

Gather Blocks (GB): We used five checkers to evaluate this generator:

1. Determine that there are blocks to gather into the center area of
the table:

xGB_NotCentered
t =

{
1 if Ot > 1

0 otherwise

where Ot are the number of blocks that are outside of the center
area at time t.

2. Determine that the blocks to be gathered are reachable:

xGB_Reach
t =


1 if ¬R′

t = 0
R′

t
2(R′

t+¬R′
t)

else if R′
t > 0 and ¬R′

t > 0

0 otherwise

where R′
t and ¬R′

t are the number of blocks that are outside of
the center of the table and are reachable and not reachable, respec-
tively, at time t.

3. Determine that the blocks to be gathered are grippable:

xGB_Grip
t =


1 if ¬G′

t = 0
G′
t

2(G′
t+¬G′

t)
else if G′

t > 0 and ¬G′
t > 0

0 otherwise

where G′
t and ¬G′

t are the number of blocks that are outside of the
center of the table and are reachable and not reachable, respec-
tively, at time t.

4. Determine that the human bystander is not moving blocks in a way
that thwarts the robot’s progress: xNotBad

t (Eq. 1).
5. (Progress checker) Determine the progress the robot has made so

far in gathering blocks when using this generator up to time t:

xGB_Progress
t =

8 ·Gatheredt

TGB
t

,

where Gatheredt is the number of blocks the robot has moved
to the center of the table when using generator Gather Blocks so
far and TGB

t is the amount of time (in seconds) that the robot has
used this generator so far.

Scatter Blocks (SB): We used four checkers to evaluate this generator:

1. Determine that there are blocks that need to be separated:

xSB_Together
t =

{
1 if St > 1

0 otherwise

where St are the number of blocks at time t that need to be sepa-
rated in order for the robot to be able to pick them up.

2. Determine that pushing the blocks will not cause any block to be-
come unreachable (including falling off the table):

xSB_UnReachable
t =


1 if Cont > 1

0.6 if Cont = 1

0.2 if Cont = 0

0 otherwise

where Cont is the minimum distance at time t from the limit of
the robot’s reach (or the edge of the table) to the set of blocks
conjoined with an ungrippable block.



3. Determine that the human bystander is not moving blocks in a way
that thwarts the robot’s progress: xNotBad

t (Eq. 1).
4. (Progress checker) Determine the progress the robot has made so

far in separating blocks when using this generator up to time t:

xSB_Progress
t =

7 · Sept

T SB
t

,

where Sept is the number of blocks the robot has moved to the
center of the table when using generator Scatter Blocks so far and
T SB
t is the amount of time (in seconds) that the robot has used this

generator so far.

Request Help (RH): We used four checkers to evaluate the this gen-
erator:

1. Determine that there are blocks that need to be placed:

xRH_Anomalies
t =

{
1 if At < 9

0 otherwise

where At is the number of anomalies (blocks that are out of reach,
plus blocks that are not grippable, plus blocks that are not in the
center of the table, plus blocks that are flipped) at time t.

2. Determine that the human bystander is currently responding to the
robot’s requests to resolve anomalies:

xRH_NowResponding
t =


1 if Ct

t−7 > 0

0.5 else if Ct
t−12 > 0

0 otherwise

3. Determine that the human bystander is not causing more anoma-
lies:

xRH_NotBad
t =

{
λxRH_NotBad

t−1 if At < At−1

λ+ (1− λ)xRH_NotBad
t−1 otherwise

4. (Progress checker) Determine the progress that has been made
when using this generator:

xRH_Progress
t =

5Ct
0

TRH
,

where Cv
k is the number of resolved anomalies that have been

made in the time interval [k, v] when Request Help is active and
TRH is the amount of time the robot has spent using generator
Request Help.

Request Setup (RS): We used four checkers to evaluate this generator:

1. Determine that there are blocks that need to be placed:

xRS_Blocks2Place
t =

{
1 if Bt < 9

0 otherwise

where Bt is the number of blocks that are in their target locations
at time t.

2. Determine that the human bystander is currently responding to the
robot’s requests to set up the table:

xRS_NowResponding
t =


1 if Itt−7 > 0

0.5 else if Itt−12 > 0

0 otherwise

3. Determine that the human bystander is not malicious:

xRS_NotBad
t =

{
λxRS_NotBad

t−1 if Bt < Bt−1

λ+ (1− λ)xRS_NotBad
t−1 otherwise

4. (Progress checker) Determine the progress that has been made
when using this generator so far:

xRS_Progress
t =

5It0
TRS
t

,

where Ivk is the amount of work done (blocks placed plus anoma-
lies corrected) that have been made in the time interval [k, v] when
Request Setup is active and TRS

t is the amount of time the robot
has spent using generator Request Setup.

C.4 AAT Predictions

AAT predictions are made using a mixture model, in which each
training sample is given a weight. Let DG be the set of training sam-
ples for generator G ∈ Γ. Then, let x(d) be the veracity assessment
vector for some sample d ∈ DG. Let xt be the current veracity as-
sessment vector. Then the distance between data sample d and the
current veracity assessment vector is given by:

dist(xt,x(d)) =
∑
ϕ∈Φ

mG(ϕ) ∗ |xϕ
t − x(d)ϕ|

where mG(ϕ) = 1 if ϕ is a checker associated with generator G and
mG(ϕ) = 0 otherwise.

The weight of sample d in the mixture model, denoted wd, is given
by

wd =
1

1 + (dist(xt,x(d)))
5 .

However, if wd ≤ 0.05, sample d did not contribute in the mixture
model.

D IRB Approval
Experiments conducted with human subjects were approved by the
Brigham Young University IRB.
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